母音 a, i, u, e, o と子音 k, s, t の 8 個を 1 列に並べるとき、次の並べ方は何通りあるか。 (1) 両端が母音である。 (2) 母音 5 個が続いて並ぶ。

確率論・統計学順列組み合わせ場合の数並び替え
2025/5/14

1. 問題の内容

母音 a, i, u, e, o と子音 k, s, t の 8 個を 1 列に並べるとき、次の並べ方は何通りあるか。
(1) 両端が母音である。
(2) 母音 5 個が続いて並ぶ。

2. 解き方の手順

(1) 両端が母音である場合:
まず、両端に母音を配置する方法を考えます。5 つの母音から 2 つを選んで並べるので、5P2=5×4=205P2 = 5 \times 4 = 20 通りです。
次に、残りの 6 個の文字(3 つの母音と 3 つの子音)を並べる方法は、6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 通りです。
したがって、両端が母音である並べ方は、20×720=1440020 \times 720 = 14400 通りです。
(2) 母音 5 個が続いて並ぶ場合:
まず、5 つの母音を 1 つのグループとして考えます。この 5 つの母音の並び方は、5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 120 通りです。
次に、この母音のグループと 3 つの子音を並べることを考えます。これは 4 つのものを並べることになるので、4!=4×3×2×1=244! = 4 \times 3 \times 2 \times 1 = 24 通りです。
したがって、母音 5 個が続いて並ぶ並べ方は、120×24=2880120 \times 24 = 2880 通りです。

3. 最終的な答え

(1) 14400 通り
(2) 2880 通り

「確率論・統計学」の関連問題

2つのサイコロを投げたとき、小さい方の目の数をXとします。ただし、2つのサイコロの目が等しいときは、その目の数をXとします。 (a) 小さい方の目の数が2である確率 $P(X=2)$ を求めます。 (...

確率期待値サイコロ確率分布
2025/5/23

1から6までの目が出るサイコロを2つ同時に投げたとき、出た目の積が5の倍数になる確率を求める問題です。

確率サイコロ場合の数
2025/5/23

確率変数Xの確率密度関数が与えられており、(a)期待値E(X)と(b)分散V(X)を求める問題です。確率密度関数は、 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \...

確率密度関数期待値分散積分
2025/5/23

1から6までの目がそれぞれ1/6の確率で出るサイコロを60回投げたとき、奇数の目が出る回数をXとします。 (a) 期待値 $E(X)$ を求めます。 (b) 分散 $V(X)$ を求めます。

期待値分散ベルヌーイ試行確率
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le x ...

確率密度関数期待値分散積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が次のように与えられている。 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le...

確率密度関数期待値積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられており、以下のようになっています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x...

確率密度関数期待値分散積分
2025/5/23

問題は、1から6までの目がそれぞれ$\frac{1}{6}$の確率で出るサイコロを60回投げたとき、奇数の目が出る回数を$X$とする。 (a) 期待値$E(X)$を求める。 (b) 分散$V(X)$を...

確率期待値分散二項分布
2025/5/23

6枚のカードがあり、表には1から6の整数が書かれ、裏にはそれぞれ表の数から7を引いた数が書かれています。サイコロを投げ、4以下の目ならカードの表の数を点数とし、5以上の目なら裏の数を点数とします。この...

確率事象サイコロ確率計算
2025/5/23

150人の学生を対象に、通学時の電車とバスの利用状況を調査した結果、電車利用者は111人、バス利用者は96人、両方利用者は69人だった。 このとき、表の空欄(ア~ケ)に当てはまる数字と、電車とバスを両...

集合ベン図統計
2025/5/23