式 $9 = \Box - 2 + \Box$ において、$\Box$ に入る同じ数値を求めなさい。

算数方程式加減算数値
2025/5/14

1. 問題の内容

9=2+9 = \Box - 2 + \Box において、\Box に入る同じ数値を求めなさい。

2. 解き方の手順

\Box に入る数値を xx とすると、与えられた式は 9=x2+x9 = x - 2 + x となる。
これを整理すると、
9=2x29 = 2x - 2
両辺に2を加算すると、
9+2=2x2+29 + 2 = 2x - 2 + 2
11=2x11 = 2x
両辺を2で割ると、
112=2x2\frac{11}{2} = \frac{2x}{2}
x=5.5x = 5.5

3. 最終的な答え

5. 5

「算数」の関連問題

0, 1, 2, 3, 4 の5個の数字を使って整数を作ります。同じ数字を重複して使って良い時、3桁以下の整数は何個作れるかを求める問題です。

場合の数整数の構成組み合わせ
2025/5/14

0, 1, 2, 3, 4 の5個の数字を重複して用いて4桁の整数を作るとき、奇数は何個できるかを求める。

場合の数整数奇数桁数
2025/5/14

$\left(\frac{1}{\sqrt{7}+\sqrt{6}}\right)^2$ を計算する問題です。

計算有理化平方根
2025/5/14

次の式を計算します。 $\frac{1}{\sqrt{3} - \sqrt{2}} + \frac{1}{\sqrt{3} + \sqrt{2}}$

有理化平方根の計算
2025/5/14

与えられた式を計算し、簡略化せよ。 式は次の通りです: $\frac{6\sqrt{3}}{\sqrt{2}} - \frac{6\sqrt{2}}{\sqrt{3}} + \frac{6}{\sqr...

平方根有理化計算
2025/5/14

与えられた分数の分母を有理化する問題です。分数は $\frac{8}{3\sqrt{6}}$ です。

分数有理化平方根計算
2025/5/14

与えられた数式 $\frac{4}{\sqrt{6}+\sqrt{2}}$ を計算し、簡単にしてください。分母に平方根が含まれているため、有理化する必要があります。

平方根有理化計算
2025/5/14

与えられた式 $\frac{\sqrt{5} + \sqrt{2}}{\sqrt{3}}$ を計算し、分母を有理化せよ。

分母の有理化根号計算
2025/5/14

与えられた数式 $\frac{\sqrt{5}}{\sqrt{12}}$ を簡略化し、分母に根号が含まれない形に変形(有理化)してください。

平方根有理化根号
2025/5/14

$\frac{\sqrt{5}}{\sqrt{12}}$を簡単にせよ。分母に根号を含まない形にする。

平方根有理化根号の計算
2025/5/14