単項式 $-4x^3y^2$ について、$y$ に着目したとき、この単項式の係数と次数を求める問題です。

代数学単項式係数次数多項式
2025/5/18

1. 問題の内容

単項式 4x3y2-4x^3y^2 について、yy に着目したとき、この単項式の係数と次数を求める問題です。

2. 解き方の手順

yy に着目するということは、yy 以外の文字 (xx) は定数として扱うということです。
* 係数について:yy 以外の部分を係数とみなします。つまり、4x3-4x^3 が係数になります。選択肢を見ると、③ が該当します。
* 次数について:yy の指数が次数になります。y2y^2 なので、次数は 2 です。

3. 最終的な答え

ウ: ③
エ: 2

「代数学」の関連問題

$x = \frac{1}{\sqrt{3}+1}$, $y = \frac{1}{\sqrt{3}-1}$ のとき、以下の式の値を求める。 (1) $x+y$ (2) $x^2+y^2$ (3) $...

式の計算有理化根号展開代入
2025/5/19

与えられた4つの式を因数分解する問題です。 (1) $x^3 + 27$ (2) $8x^3 + 27y^3$ (3) $x^3 - 1$ (4) $27x^3 - y^3$

因数分解立方公式多項式
2025/5/19

周囲の長さが24cmである長方形を考える。長辺の長さを $x$ cmとしたとき、長方形の面積が20cm$^2$以上32cm$^2$以下となるような $x$ の範囲を求める。

二次不等式長方形面積不等式
2025/5/19

連立不等式 $4x \geq -x^2 \geq 2x - 3$ を解く問題です。

不等式連立不等式二次不等式因数分解
2025/5/19

与えられた連立不等式を解く問題です。連立不等式は以下の通りです。 $ \begin{cases} x^2 - x - 6 < 0 \\ 2x^2 + x - 1 \geq 0 \end{cases} ...

連立不等式二次不等式因数分解
2025/5/19

与えられた不等式 $x^2 + 6x + 11 < 0$ を解く問題です。

二次不等式平方完成解なし
2025/5/19

与えられた不等式 $x^2 + 4x + 4 \leq 0$ を解く問題です。

不等式二次不等式因数分解
2025/5/19

2次関数 $y = 4x^2 + 3x$ のグラフと $x$ 軸の共有点の座標を求める問題です。

二次関数グラフ共有点因数分解方程式
2025/5/19

2次関数 $y = x^2 + 2kx + k^2 - k$ のグラフが、$x$軸と異なる2点で交わるような定数 $k$ の値の範囲を求める問題です。

二次関数判別式不等式グラフ
2025/5/19

与えられた4つの式を展開する問題です。 (1) $(x+2)(x^2 - 2x + 4)$ (2) $(2x+3y)(4x^2 - 6xy + 9y^2)$ (3) $(x-1)(x^2 + x + ...

式の展開因数分解の公式立方和立方差
2025/5/19