2次方程式 $x^2 + 3ax + a^2 - a + 3 = 0$ が異なる2つの実数解を持つような定数 $a$ の範囲を求める問題です。
2025/3/23
1. 問題の内容
2次方程式 が異なる2つの実数解を持つような定数 の範囲を求める問題です。
2. 解き方の手順
2次方程式が異なる2つの実数解を持つための条件は、判別式 であることです。
この2次方程式の判別式 は、
異なる2つの実数解を持つためには、 である必要があるので、
この不等式を解くために、まず を解きます。因数分解すると、
よって、 となります。
の解は、 または となります。 を小数に直すと なので、
または と表すことができます。
また、 であり、問題文の表記に合わせて と考えると、 または とすると、問題文の条件に合うように、、となる。
3. 最終的な答え
,