与えられた積分を計算します。 積分は $\int \frac{1}{x \log x} dx$ です。

解析学積分置換積分対数関数
2025/5/18

1. 問題の内容

与えられた積分を計算します。
積分は 1xlogxdx\int \frac{1}{x \log x} dx です。

2. 解き方の手順

この積分を解くために、置換積分を使用します。
u=logxu = \log x と置くと、dudx=1x\frac{du}{dx} = \frac{1}{x} より du=1xdxdu = \frac{1}{x} dx となります。
したがって、元の積分は次のように書き換えられます。
1xlogxdx=1logx1xdx=1udu\int \frac{1}{x \log x} dx = \int \frac{1}{\log x} \cdot \frac{1}{x} dx = \int \frac{1}{u} du
1udu\int \frac{1}{u} du は基本的な積分であり、その結果は logu+C\log |u| + C となります。
したがって、
1udu=logu+C\int \frac{1}{u} du = \log |u| + C
ここで、u=logxu = \log x を代入すると、積分は次のようになります。
loglogx+C\log |\log x| + C

3. 最終的な答え

loglogx+C\log |\log x| + C

「解析学」の関連問題

数列 $\{a_n\}$ の第 $n$ 項 $a_n$ が $a_n = \frac{1}{(2n-1)(2n+1)}$ で表されるとき、以下の問いに答えます。 (1) $a_n = p \left(...

数列部分分数分解級数
2025/6/7

放物線 $y = x^2 - 4x$ 上の点 $A(4, 0)$ における接線を $l$ とするとき、以下の問いに答えます。 (1) 直線 $l$ の方程式を求めます。 (2) 放物線と直線 $l$ ...

微分積分接線面積
2025/6/7

定積分 $\int_{-2}^{3} (x-1)(x+2) dx$ を計算する。

定積分積分多項式
2025/6/7

(1) $\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{5}{9}\pi + \cos\frac{7}{9}\pi$ の値を求める。 (2) ...

三角関数加法定理和積の公式
2025/6/7

関数 $y = x + \sqrt{6 - x^2}$ の定義域が $-\sqrt{6} \le x \le \sqrt{6}$ であるとき、この関数の最大値を求める問題です。導関数 $y' = 1 ...

関数の最大値導関数定義域増減平方根
2025/6/7

二変数関数 $\frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$ の $(x, y) \to (0, 0)$ における極限を求めます。

多変数関数極限偏微分
2025/6/7

与えられた関数の $n$ 次導関数を求める問題です。 (1) $x \sin x$ (2) $x^2 e^{3x}$

導関数ライプニッツの公式微分三角関数指数関数
2025/6/7

関数 $y = e^x \sin x$ の $n$ 次導関数を求める問題です。

導関数数学的帰納法指数関数三角関数
2025/6/7

曲線 $y = x^3 - x$ を微分すると、 $$\frac{dy}{dx} = 3x^2 - 1$$ したがって、点 $T(t, t^3 - t)$ における接線の傾きは $3t...

接線微分3次方程式解の個数
2025/6/7

数列 $\frac{1}{1\cdot4}, \frac{1}{4\cdot7}, \frac{1}{7\cdot10}, \dots$ の初項から第 $n$ 項までの和を求めよ。

数列級数部分分数分解シグマ
2025/6/7