関数 $y = e^x \sin x$ の $n$ 次導関数を求める問題です。解析学導関数数学的帰納法指数関数三角関数2025/6/71. 問題の内容関数 y=exsinxy = e^x \sin xy=exsinx の nnn 次導関数を求める問題です。2. 解き方の手順まず、yyy の導関数をいくつか計算し、規則性を見つけます。y=exsinxy = e^x \sin xy=exsinxy′=exsinx+excosx=ex(sinx+cosx)y' = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x)y′=exsinx+excosx=ex(sinx+cosx)y′′=ex(sinx+cosx)+ex(cosx−sinx)=ex(2cosx)y'' = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = e^x (2\cos x)y′′=ex(sinx+cosx)+ex(cosx−sinx)=ex(2cosx)y′′′=ex(2cosx)+ex(−2sinx)=ex(2cosx−2sinx)=2ex(cosx−sinx)y''' = e^x (2\cos x) + e^x (-2\sin x) = e^x (2\cos x - 2\sin x) = 2e^x (\cos x - \sin x)y′′′=ex(2cosx)+ex(−2sinx)=ex(2cosx−2sinx)=2ex(cosx−sinx)y(4)=2ex(cosx−sinx)+2ex(−sinx−cosx)=2ex(−2sinx)=−4exsinxy^{(4)} = 2e^x (\cos x - \sin x) + 2e^x (-\sin x - \cos x) = 2e^x (-2\sin x) = -4e^x \sin xy(4)=2ex(cosx−sinx)+2ex(−sinx−cosx)=2ex(−2sinx)=−4exsinxy(4)=−4yy^{(4)} = -4yy(4)=−4y となることがわかります。ここで、sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4})sinx+cosx=2sin(x+4π) と変形できることを利用します。y′=ex(sinx+cosx)=2exsin(x+π4)y' = e^x (\sin x + \cos x) = \sqrt{2} e^x \sin(x + \frac{\pi}{4})y′=ex(sinx+cosx)=2exsin(x+4π)y′′=2excosx=2exsin(x+π2)=(2)2exsin(x+2π4)y'' = 2e^x \cos x = 2e^x \sin(x + \frac{\pi}{2}) = (\sqrt{2})^2 e^x \sin(x + \frac{2\pi}{4})y′′=2excosx=2exsin(x+2π)=(2)2exsin(x+42π)y′′′=2ex(cosx−sinx)=22exsin(x+3π4)=(2)3exsin(x+3π4)y''' = 2e^x (\cos x - \sin x) = 2\sqrt{2} e^x \sin(x + \frac{3\pi}{4}) = (\sqrt{2})^3 e^x \sin(x + \frac{3\pi}{4})y′′′=2ex(cosx−sinx)=22exsin(x+43π)=(2)3exsin(x+43π)y(4)=−4exsinx=4exsin(x+π)=(2)4exsin(x+4π4)y^{(4)} = -4e^x \sin x = 4e^x \sin(x + \pi) = (\sqrt{2})^4 e^x \sin(x + \frac{4\pi}{4})y(4)=−4exsinx=4exsin(x+π)=(2)4exsin(x+44π)一般に、y(n)=(2)nexsin(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \sin(x + \frac{n\pi}{4})y(n)=(2)nexsin(x+4nπ) と推測できます。数学的帰納法で証明します。n=1の場合、y′=(2)1exsin(x+π4)y' = (\sqrt{2})^1 e^x \sin(x + \frac{\pi}{4})y′=(2)1exsin(x+4π) は成立します。n=kの場合、y(k)=(2)kexsin(x+kπ4)y^{(k)} = (\sqrt{2})^k e^x \sin(x + \frac{k\pi}{4})y(k)=(2)kexsin(x+4kπ) が成立すると仮定します。このとき、n=k+1の場合、y(k+1)=ddxy(k)=ddx[(2)kexsin(x+kπ4)]=(2)k[exsin(x+kπ4)+excos(x+kπ4)]y^{(k+1)} = \frac{d}{dx} y^{(k)} = \frac{d}{dx} [(\sqrt{2})^k e^x \sin(x + \frac{k\pi}{4})] = (\sqrt{2})^k [e^x \sin(x + \frac{k\pi}{4}) + e^x \cos(x + \frac{k\pi}{4})]y(k+1)=dxdy(k)=dxd[(2)kexsin(x+4kπ)]=(2)k[exsin(x+4kπ)+excos(x+4kπ)]=(2)kex[sin(x+kπ4)+cos(x+kπ4)]= (\sqrt{2})^k e^x [\sin(x + \frac{k\pi}{4}) + \cos(x + \frac{k\pi}{4})]=(2)kex[sin(x+4kπ)+cos(x+4kπ)]=(2)kex[sin(x+kπ4)+sin(x+kπ4+π2)]= (\sqrt{2})^k e^x [\sin(x + \frac{k\pi}{4}) + \sin(x + \frac{k\pi}{4} + \frac{\pi}{2})]=(2)kex[sin(x+4kπ)+sin(x+4kπ+2π)]=(2)kex2sin(x+kπ4+π4)= (\sqrt{2})^k e^x \sqrt{2} \sin(x + \frac{k\pi}{4} + \frac{\pi}{4})=(2)kex2sin(x+4kπ+4π)=(2)k+1exsin(x+(k+1)π4)= (\sqrt{2})^{k+1} e^x \sin(x + \frac{(k+1)\pi}{4})=(2)k+1exsin(x+4(k+1)π)よって、n=k+1n=k+1n=k+1 の場合も成立します。したがって、y(n)=(2)nexsin(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \sin(x + \frac{n\pi}{4})y(n)=(2)nexsin(x+4nπ)3. 最終的な答えy(n)=(2)nexsin(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \sin(x + \frac{n\pi}{4})y(n)=(2)nexsin(x+4nπ)