三角形ABCにおいて、$B = 45^\circ$, $a:b = 1:2$, $c = \sqrt{2}$ である。 (1) $\sin A$ の値を求めよ。 (2) $a$ の値を求めよ。幾何学三角比正弦定理三角形2025/3/231. 問題の内容三角形ABCにおいて、B=45∘B = 45^\circB=45∘, a:b=1:2a:b = 1:2a:b=1:2, c=2c = \sqrt{2}c=2 である。(1) sinA\sin AsinA の値を求めよ。(2) aaa の値を求めよ。2. 解き方の手順(1) sinA\sin AsinA の値を求める。正弦定理より、asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}sinAa=sinBba:b=1:2a:b = 1:2a:b=1:2 より、b=2ab = 2ab=2asinB=sin45∘=12\sin B = \sin 45^\circ = \frac{1}{\sqrt{2}}sinB=sin45∘=21asinA=2a12\frac{a}{\sin A} = \frac{2a}{\frac{1}{\sqrt{2}}}sinAa=212asinA=a⋅122a\sin A = \frac{a \cdot \frac{1}{\sqrt{2}}}{2a}sinA=2aa⋅21sinA=122=24\sin A = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}sinA=221=42(2) aaa の値を求める。正弦定理より、asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}sinAa=sinCca24=2sinC\frac{a}{\frac{\sqrt{2}}{4}} = \frac{\sqrt{2}}{\sin C}42a=sinC2sinC=2⋅24a=12a=12a\sin C = \frac{\sqrt{2} \cdot \frac{\sqrt{2}}{4}}{a} = \frac{\frac{1}{2}}{a} = \frac{1}{2a}sinC=a2⋅42=a21=2a1A+B+C=180∘A + B + C = 180^\circA+B+C=180∘ より、A+C=180∘−45∘=135∘A + C = 180^\circ - 45^\circ = 135^\circA+C=180∘−45∘=135∘C=135∘−AC = 135^\circ - AC=135∘−AsinC=sin(135∘−A)=sin135∘cosA−cos135∘sinA=12cosA+12sinA\sin C = \sin (135^\circ - A) = \sin 135^\circ \cos A - \cos 135^\circ \sin A = \frac{1}{\sqrt{2}} \cos A + \frac{1}{\sqrt{2}} \sin AsinC=sin(135∘−A)=sin135∘cosA−cos135∘sinA=21cosA+21sinA12a=12cosA+12sinA\frac{1}{2a} = \frac{1}{\sqrt{2}} \cos A + \frac{1}{\sqrt{2}} \sin A2a1=21cosA+21sinAsin2A+cos2A=1\sin^2 A + \cos^2 A = 1sin2A+cos2A=1 より、cosA=1−sin2A=1−(24)2=1−216=1−18=78=144\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - (\frac{\sqrt{2}}{4})^2} = \sqrt{1 - \frac{2}{16}} = \sqrt{1 - \frac{1}{8}} = \sqrt{\frac{7}{8}} = \frac{\sqrt{14}}{4}cosA=1−sin2A=1−(42)2=1−162=1−81=87=41412a=12⋅144+12⋅24=74+14=7+14\frac{1}{2a} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{14}}{4} + \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{4} = \frac{\sqrt{7}}{4} + \frac{1}{4} = \frac{\sqrt{7} + 1}{4}2a1=21⋅414+21⋅42=47+41=47+12a=47+12a = \frac{4}{\sqrt{7} + 1}2a=7+14a=27+1=2(7−1)(7+1)(7−1)=2(7−1)7−1=2(7−1)6=7−13a = \frac{2}{\sqrt{7} + 1} = \frac{2(\sqrt{7} - 1)}{(\sqrt{7} + 1)(\sqrt{7} - 1)} = \frac{2(\sqrt{7} - 1)}{7 - 1} = \frac{2(\sqrt{7} - 1)}{6} = \frac{\sqrt{7} - 1}{3}a=7+12=(7+1)(7−1)2(7−1)=7−12(7−1)=62(7−1)=37−13. 最終的な答え(1) sinA=24\sin A = \frac{\sqrt{2}}{4}sinA=42(2) a=7−13a = \frac{\sqrt{7} - 1}{3}a=37−1