円 $x^2 + y^2 = 10$ と直線 $y = 3x + 10$ の関係(交点の有無など)を調べる問題です。具体的に何が求められているかは明記されていませんが、ここでは、円と直線の交点の個数を求めます。

幾何学直線交点判別式二次方程式接する
2025/5/19

1. 問題の内容

x2+y2=10x^2 + y^2 = 10 と直線 y=3x+10y = 3x + 10 の関係(交点の有無など)を調べる問題です。具体的に何が求められているかは明記されていませんが、ここでは、円と直線の交点の個数を求めます。

2. 解き方の手順

円と直線の交点の個数を調べるには、直線の方程式を円の方程式に代入し、得られた二次方程式の判別式を調べます。
まず、y=3x+10y = 3x + 10x2+y2=10x^2 + y^2 = 10 に代入します。
x2+(3x+10)2=10x^2 + (3x + 10)^2 = 10
これを展開し、整理します。
x2+9x2+60x+100=10x^2 + 9x^2 + 60x + 100 = 10
10x2+60x+90=010x^2 + 60x + 90 = 0
x2+6x+9=0x^2 + 6x + 9 = 0
この二次方程式の判別式 DD を計算します。
D=b24acD = b^2 - 4ac であり、a=1,b=6,c=9a = 1, b = 6, c = 9 です。
D=62419=3636=0D = 6^2 - 4 * 1 * 9 = 36 - 36 = 0
判別式 D=0D = 0 であるので、この二次方程式は重解を持ちます。したがって、円と直線は接していることになります。交点の個数は1個です。

3. 最終的な答え

接する(交点の個数は1個)

「幾何学」の関連問題

直線 $y = \frac{1}{\sqrt{3}}x + 1$ とのなす角が $\frac{\pi}{4}$ である直線で、原点を通るものの式を求める問題です。

直線角度傾き三角関数
2025/5/19

一辺の長さが1の正四面体OABCがあり、辺OA, AB, BCを$p:(1-p)$で内分する点をそれぞれL, M, Nとする。$\vec{OA} = \vec{a}$, $\vec{OB} = \ve...

ベクトル内積空間図形正四面体面積
2025/5/19

パラメータ表示された点の軌跡を求める問題です。具体的には、以下の3つの問題があります。 (1) $x = 3 + 4t$, $y = -2 + 3t$ (2) $x = 2t - 1$, $y = t...

軌跡パラメータ表示直線放物線
2025/5/19

平面上の点 $(1,-4)$ を正六角形の1つの頂点とし、原点がその正六角形の対角線の交点であるとき、残りの5つの頂点の座標を求める問題です。

正六角形座標回転行列ベクトル
2025/5/19

問題は、2点A,B間の距離、線分ABを2:1に内分する点と外分する点の座標、直線$l$と点Aが与えられたときに、点Aを通り$l$に平行な直線の方程式、点Aを通り$l$に垂直な直線の方程式、点Aと直線$...

座標平面距離内分点外分点直線の方程式平行垂直点と直線の距離
2025/5/19

(1) 点 $(3,2)$ を原点の周りに $15^\circ$ 回転させた点の座標を求めよ。 (2) 点 $(1,4)$ を1つの頂点とし、原点が対角線の交点であるような正六角形の残りの5頂点を求め...

座標回転回転行列正六角形三角関数
2025/5/19

一辺の長さが4の正四面体OABCに球が内接している。 (1) 三角形OABの面積 $S_1$ を求める。 (2) 正四面体OABCの体積 $V_1$ を求める。 (3) 内接球の半径 $r$ を求める...

正四面体体積表面積内接球三平方の定理
2025/5/19

円 $x^2 + y^2 + 2x + 4y - 4 = 0$ の接線で、直線 $y = -\frac{1}{2}x$ に垂直なものの接線の方程式と接点の座標を求める。

接線接線の方程式点の座標垂直
2025/5/19

円 $x^2 + y^2 + 2x + 4y - 4 = 0$ の接線で、直線 $y = -\frac{1}{2}x$ に垂直なものを求める問題です。

接線直交点の距離方程式
2025/5/19

底面の半径が $a$ cm, 高さが $b$ cm の円柱Aがある。円柱Aの底面の半径を $r$ 倍にし、高さを $\frac{1}{r}$ 倍にした円柱Bを作るとき、円柱Bの体積は、円柱Aの体積の何...

体積円柱相似
2025/5/19