与えられた二次方程式 $x^2 + 3x = 0$ を解きます。

代数学二次方程式因数分解方程式の解
2025/5/19

1. 問題の内容

与えられた二次方程式 x2+3x=0x^2 + 3x = 0 を解きます。

2. 解き方の手順

この方程式を解くために、まず左辺を因数分解します。
xx を共通因数として括り出すと、
x(x+3)=0x(x + 3) = 0
となります。
次に、積が0になる条件を利用します。つまり、x=0x = 0 または x+3=0x + 3 = 0 のどちらかが成り立つ必要があります。
x=0x = 0 の場合は、解の一つが求まります。
x+3=0x + 3 = 0 の場合は、両辺から3を引いて、x=3x = -3 となります。
したがって、この二次方程式の解は x=0x = 0x=3x = -3 です。

3. 最終的な答え

x=0,3x = 0, -3

「代数学」の関連問題

与えられた式 $x^3 - 6x^2y + 18xy^2 - 27y^3$ を因数分解してください。

因数分解多項式展開
2025/5/21

与えられた二次関数の式を平方完成して、頂点の座標を求められる形に変形します。 具体的には、以下の4つの問題があります。 (11) $y = 3x^2 + 12x$ (12) $y = -3x^2 - ...

二次関数平方完成頂点
2025/5/21

実数 $x, y$ が $x^2 + y^2 = 4$ を満たしているとき、$4x + 2y^2$ の最大値、最小値を求め、そのときの $x, y$ の値を求める。

最大値最小値二次関数条件付き最大最小数式処理
2025/5/21

与えられた二次関数 $y = 3x^2 + 12x$ を平方完成した形 $y = 3(x+2)^2 - 12$ に変換する問題です。

二次関数平方完成関数の変換
2025/5/21

与えられた2つの二重和を計算します。 (1) $\sum_{m=1}^{n} \{\sum_{k=1}^{m} (3k+1)\}$ (2) $\sum_{m=1}^{n} \{\sum_{l=1}^{...

シグマ数列計算
2025/5/21

与えられた式 $(x^2 + 3x + 2)(x^2 - 3x + 2)$ を展開せよ。

式の展開多項式因数分解
2025/5/21

与えられた数列 $1 \cdot n, 3(n-1), 5(n-2), \dots, (2n-1) \cdot 1$ について、以下の問題を解きます。 (1) 第 $k$ 項を $n$ と $k$ を...

数列Σ(シグマ)等差数列和の公式
2025/5/21

与えられた数列の和を求める問題です。 (1) は $1 \cdot (n+1), 2 \cdot (n+2), 3 \cdot (n+3), \dots, n \cdot (n+n)$ の和を求めます...

数列級数シグマ和の公式
2025/5/21

与えられた式 $2(x+3y)^2 - (x+3y) - 1$ を因数分解します。

因数分解多項式変数変換
2025/5/21

複素数 $z$ に関する以下の方程式を満たす点 $z$ 全体の集合が、どのような図形になるかを答える問題です。 (1) $|z-3| = 1$ (2) $|z+2i| = 2$ (3) $|z+2| ...

複素数複素平面絶対値直線
2025/5/21