問題は、式 $(a+b+c)^2 - (b+c-a)^2 + (c+a-b)^2 - (a+b-c)^2$ を簡略化することです。

代数学式の展開因数分解多項式
2025/3/23

1. 問題の内容

問題は、式 (a+b+c)2(b+ca)2+(c+ab)2(a+bc)2(a+b+c)^2 - (b+c-a)^2 + (c+a-b)^2 - (a+b-c)^2 を簡略化することです。

2. 解き方の手順

まず、各項を展開し、整理します。
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(b+ca)2=b2+c2+a2+2bc2ab2ca(b+c-a)^2 = b^2 + c^2 + a^2 + 2bc - 2ab - 2ca
(c+ab)2=c2+a2+b2+2ca2bc2ab(c+a-b)^2 = c^2 + a^2 + b^2 + 2ca - 2bc - 2ab
(a+bc)2=a2+b2+c2+2ab2bc2ca(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca
したがって、与えられた式は、
(a2+b2+c2+2ab+2bc+2ca)(a2+b2+c2+2bc2ab2ca)+(a2+b2+c2+2ca2bc2ab)(a2+b2+c2+2ab2bc2ca)(a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) - (a^2 + b^2 + c^2 + 2bc - 2ab - 2ca) + (a^2 + b^2 + c^2 + 2ca - 2bc - 2ab) - (a^2 + b^2 + c^2 + 2ab - 2bc - 2ca)
=a2+b2+c2+2ab+2bc+2caa2b2c22bc+2ab+2ca+a2+b2+c2+2ca2bc2aba2b2c22ab+2bc+2ca= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 - 2bc + 2ab + 2ca + a^2 + b^2 + c^2 + 2ca - 2bc - 2ab - a^2 - b^2 - c^2 - 2ab + 2bc + 2ca
=(a2a2+a2a2)+(b2b2+b2b2)+(c2c2+c2c2)+(2ab+2ab2ab2ab)+(2bc2bc2bc+2bc)+(2ca+2ca+2ca+2ca)= (a^2 - a^2 + a^2 - a^2) + (b^2 - b^2 + b^2 - b^2) + (c^2 - c^2 + c^2 - c^2) + (2ab + 2ab - 2ab - 2ab) + (2bc - 2bc - 2bc + 2bc) + (2ca + 2ca + 2ca + 2ca)
=0+0+0+0+0+8ca= 0 + 0 + 0 + 0 + 0 + 8ca
=8ca= 8ca

3. 最終的な答え

8ca8ca

「代数学」の関連問題

与えられた式 $a^2+2bc-ab-4c^2$ を因数分解する問題です。

因数分解多項式式の展開
2025/6/14

与えられた式 $\frac{\sqrt{-3}}{\sqrt{-2}}$ を計算して簡略化します。

複素数平方根有理化計算
2025/6/14

与えられた連立一次方程式を解き、$a$と$b$の値を求める問題です。連立方程式は以下の通りです。 $415.8 = 10a + 4.37b$ $240 = 4.37a + 2.56b$

連立方程式一次方程式代入法
2025/6/14

与えられた連立方程式を解き、$a$と$b$の値を求める問題です。連立方程式は以下の通りです。 $\begin{cases} 791.5 = 10a + 7.85b \\ 786.425 = 7.85a...

連立方程式線形方程式
2025/6/14

与えられた4つの3次方程式を因数定理を用いて解く問題です。 (1) $x^3 - 4x^2 + 6x - 4 = 0$ (2) $x^3 - 2x^2 - 5x + 6 = 0$ (3) $x^3 -...

3次方程式因数定理解の公式複素数
2025/6/14

与えられた式を計算し、空欄を埋める問題です。問題の式は以下の通りです。 $\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1 \times (\sqrt{5} - \sqr...

式の計算分母の有理化平方根計算
2025/6/14

以下の連立方程式が解 $x$, $y$ を持つように、$k$の値を求めよ。 $\begin{cases} 2x+3(k+1)y=8 &(1)\\ (k+2)x+7y=3(k+1) &(2)\\ x+4...

連立方程式変数解の公式
2025/6/14

以下の連立方程式が解 $x, y$ を持つように、$k$の値を定める問題です。 $ \begin{cases} 2x + 3(k+1)y = 8 \\ (k+2)x + 7y = 3(k+1) \\ ...

連立方程式変数方程式解の存在条件因数分解
2025/6/14

与えられた同次1次連立方程式が非自明解を持つかどうか調べ、解を求めます。連立方程式は以下の通りです。 $ \begin{cases} x + 3y - 2z = 0 \\ 2x - 3y + z = ...

連立方程式線形代数行列式非自明解
2025/6/14

あるお店の先月の販売数は、商品Aと商品Bを合わせて860個。今月の販売数は、先月と比べて、商品Aは5%少なく、商品Bは10%多く売れ、全体で50個多くなった。今月の商品A、商品Bの販売数の関係として、...

連立方程式文章問題割合
2025/6/14