次の式を展開せよ。 (1) $(a^2 - 2bc)(bc + 3a^2)$ (2) $(m^2 - 2m - 1)^2$ (3) $(x-y)^2(x+y)^2(x^2+y^2)^2$ (4) $(a+b-c-d)(a-b-c+d)$

代数学展開多項式
2025/5/19
はい、承知しました。以下の形式で回答します。

1. 問題の内容

次の式を展開せよ。
(1) (a22bc)(bc+3a2)(a^2 - 2bc)(bc + 3a^2)
(2) (m22m1)2(m^2 - 2m - 1)^2
(3) (xy)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2
(4) (a+bcd)(abc+d)(a+b-c-d)(a-b-c+d)

2. 解き方の手順

(1) (a22bc)(bc+3a2)(a^2 - 2bc)(bc + 3a^2) を展開します。
a2(bc+3a2)2bc(bc+3a2)=a2bc+3a42b2c26a2bc=3a45a2bc2b2c2a^2(bc + 3a^2) - 2bc(bc + 3a^2) = a^2bc + 3a^4 - 2b^2c^2 - 6a^2bc = 3a^4 - 5a^2bc - 2b^2c^2
(2) (m22m1)2(m^2 - 2m - 1)^2 を展開します。
(m22m1)2=((m22m)1)2=(m22m)22(m22m)+1=m44m3+4m22m2+4m+1=m44m3+2m2+4m+1(m^2 - 2m - 1)^2 = ((m^2 - 2m) - 1)^2 = (m^2 - 2m)^2 - 2(m^2 - 2m) + 1 = m^4 - 4m^3 + 4m^2 - 2m^2 + 4m + 1 = m^4 - 4m^3 + 2m^2 + 4m + 1
(3) (xy)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2 を展開します。
(xy)2(x+y)2=((xy)(x+y))2=(x2y2)2=x42x2y2+y4(x-y)^2(x+y)^2 = ((x-y)(x+y))^2 = (x^2 - y^2)^2 = x^4 - 2x^2y^2 + y^4
(x42x2y2+y4)(x2+y2)2=(x42x2y2+y4)(x4+2x2y2+y4)=(x4+y42x2y2)(x4+y4+2x2y2)=(x4+y4)2(2x2y2)2=x8+2x4y4+y84x4y4=x82x4y4+y8(x^4 - 2x^2y^2 + y^4)(x^2+y^2)^2 = (x^4 - 2x^2y^2 + y^4)(x^4 + 2x^2y^2 + y^4) = (x^4 + y^4 - 2x^2y^2)(x^4 + y^4 + 2x^2y^2) = (x^4 + y^4)^2 - (2x^2y^2)^2 = x^8 + 2x^4y^4 + y^8 - 4x^4y^4 = x^8 - 2x^4y^4 + y^8
(4) (a+bcd)(abc+d)(a+b-c-d)(a-b-c+d) を展開します。
(a+bcd)(abc+d)=(a+(bcd))(a(b+cd))(a+b-c-d)(a-b-c+d) = (a + (b-c-d))(a - (b+c-d))
ここで、X=c+dX = c+d とおくと、与式は
(a+(bX))(a(bX))=a2(bX)2=a2(b22bX+X2)=a2b2+2bXX2=a2b2+2b(c+d)(c+d)2=a2b2+2bc+2bd(c2+2cd+d2)=a2b2c2d2+2bc+2bd2cd=a2(b2+c2+d22bc2bd+2cd)=a2(b(c+d))2=a2(bcd)2(a+(b-X))(a-(b-X)) = a^2 - (b-X)^2 = a^2 - (b^2 - 2bX + X^2) = a^2 - b^2 + 2bX - X^2 = a^2 - b^2 + 2b(c+d) - (c+d)^2 = a^2 - b^2 + 2bc + 2bd - (c^2 + 2cd + d^2) = a^2 - b^2 - c^2 - d^2 + 2bc + 2bd - 2cd = a^2 - (b^2 + c^2 + d^2 - 2bc - 2bd + 2cd) = a^2 - (b - (c+d))^2 = a^2 - (b - c - d)^2
(a+(bcd))(a(bcd))=a2(bcd)2=a2(b2+c2+d22bc+2cd2bd)=a2b2c2d2+2bc2cd+2bd(a + (b-c-d))(a - (b-c-d)) = a^2 - (b-c-d)^2 = a^2 - (b^2 + c^2 + d^2 - 2bc + 2cd - 2bd) = a^2 - b^2 - c^2 - d^2 + 2bc - 2cd + 2bd
(a+(bcd))(a(bc+d))(a+(b-c-d))(a-(b-c+d))
(a+(b(c+d)))(a(b(cd)))=(a+(bcd))(a(bc+d))=(a+bcd)(abc+d)(a+(b-(c+d)))(a-(b-(c-d))) = (a+(b-c-d))(a-(b-c+d)) = (a+b-c-d)(a-b-c+d)
X=c+dX = c+d とすると、(a+bX)(ab+X)=(a(Xb))(a+(Xb))=a2(Xb)2=a2(X22Xb+b2)=a2(c+d)2+2(c+d)bb2=a2(c2+2cd+d2)+2bc+2bdb2=a2b2c2d2+2bc+2bd2cd(a+b-X)(a-b+X) = (a-(X-b))(a+(X-b)) = a^2-(X-b)^2 = a^2 - (X^2 - 2Xb + b^2) = a^2 - (c+d)^2 + 2(c+d)b - b^2 = a^2 - (c^2+2cd+d^2) + 2bc + 2bd - b^2 = a^2 - b^2 - c^2 - d^2 + 2bc + 2bd - 2cd

3. 最終的な答え

(1) 3a45a2bc2b2c23a^4 - 5a^2bc - 2b^2c^2
(2) m44m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1
(3) x82x4y4+y8x^8 - 2x^4y^4 + y^8
(4) a2b2c2d2+2bc+2bd2cda^2 - b^2 - c^2 - d^2 + 2bc + 2bd - 2cd