男性3人、女性3人の計6人の中から、男女それぞれ2人ずつを選んで出し物をする時の組み合わせの数を求める問題です。

確率論・統計学組み合わせ場合の数順列
2025/3/24

1. 問題の内容

男性3人、女性3人の計6人の中から、男女それぞれ2人ずつを選んで出し物をする時の組み合わせの数を求める問題です。

2. 解き方の手順

まず、男性2人を選ぶ組み合わせの数を計算します。これは3人の中から2人を選ぶ組み合わせなので、3C2_3C_2で表されます。
3C2=3!2!(32)!=3!2!1!=3×2×1(2×1)(1)=3_3C_2 = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1!} = \frac{3 \times 2 \times 1}{(2 \times 1)(1)} = 3
次に、女性2人を選ぶ組み合わせの数を計算します。これも同様に、3人の中から2人を選ぶ組み合わせなので、3C2_3C_2で表され、その値は3です。
3C2=3!2!(32)!=3!2!1!=3×2×1(2×1)(1)=3_3C_2 = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1!} = \frac{3 \times 2 \times 1}{(2 \times 1)(1)} = 3
最後に、男性2人の選び方と女性2人の選び方を掛け合わせることで、全体の組み合わせの数を求めます。
全体の組み合わせ = (男性2人の選び方) × (女性2人の選び方) = 3 × 3 = 9

3. 最終的な答え

9通り

「確率論・統計学」の関連問題

20本のくじの中に当たりくじが5本入っています。A, Bの2人がこの順に1本ずつくじを引きます。引いたくじは元に戻しません。 このとき、以下の確率を求めます。 * Aが当たる確率 * Aが外れ、Bが当...

確率条件付き確率くじ引き
2025/4/10

袋Aには赤玉3個、白玉5個が入っており、袋Bには赤玉4個、白玉4個が入っている。それぞれの袋から玉を1個ずつ取り出すとき、両方とも赤玉が出る確率を求める問題です。

確率事象独立事象組み合わせ
2025/4/10

20本のくじの中に当たりくじが5本ある。A, Bの2人がこの順に1本ずつくじを引く。引いたくじは元に戻さない。このとき、Aが当たる確率、Aが外れてBが当たる確率、そしてBが当たる確率をそれぞれ求める。

確率条件付き確率くじ引き
2025/4/10

1つのサイコロを5回続けて投げるとき、奇数の目がちょうど4回出る確率と、4回以上出る確率を求める問題です。

確率二項分布サイコロ
2025/4/10

袋Aには赤玉3個、白玉5個が、袋Bには赤玉4個、白玉4個が入っている。それぞれの袋から玉を1個ずつ取り出すとき、両方とも赤玉が出る確率を求める問題です。

確率独立事象確率の乗法定理
2025/4/10

(1) 1から4までの整数が書かれた4枚のカードから2枚を同時に引くとき、引いたカードに書かれた数の和が3の倍数になる確率を求める。 (2) 袋の中に1, 1, 2, 3, 3, 4の数字が書かれた6...

確率組み合わせ条件付き確率
2025/4/10

赤球5個と白球3個が入った袋から、3個の球を同時に取り出すとき、取り出した3個の球が全て同じ色である確率を求める。

確率組み合わせ場合の数
2025/4/10

2科目の小テストに関する5人の生徒の得点データが与えられています。それぞれの科目の得点を変量 $x$ , $y$ とするとき、変量 $x$ , $y$ の相関係数を求める問題です。

相関係数統計データ分析標準偏差共分散
2025/4/10

(1) 母平均 $\mu = 80$, 母標準偏差 $\sigma = 12$ の母集団から, 大きさ $n = 400$ の無作為標本を抽出したとき, 標本平均 $\overline{X}$ が $...

確率標本平均標本比率中心極限定理正規分布統計的推測
2025/4/10

## 1. 問題の内容

期待値分散標準偏差確率変数独立性
2025/4/10