与えられた式 $2x^2 + 6xy + x - 3y - 1$ を因数分解せよ。代数学因数分解多項式2025/3/241. 問題の内容与えられた式 2x2+6xy+x−3y−12x^2 + 6xy + x - 3y - 12x2+6xy+x−3y−1 を因数分解せよ。2. 解き方の手順まず、式を xxx について整理します。2x2+(6y+1)x−(3y+1)2x^2 + (6y+1)x - (3y+1)2x2+(6y+1)x−(3y+1)次に、たすき掛けを用いて因数分解を試みます。(2x+a)(x+b)=2x2+(a+2b)x+ab(2x + a)(x + b) = 2x^2 + (a+2b)x + ab(2x+a)(x+b)=2x2+(a+2b)x+abとなるような aaa と bbb を探します。a+2b=6y+1a+2b = 6y+1a+2b=6y+1ab=−(3y+1)ab = -(3y+1)ab=−(3y+1)a=−(3y+1)/ba = -(3y+1)/ba=−(3y+1)/b を a+2b=6y+1a+2b = 6y+1a+2b=6y+1 に代入します。−(3y+1)/b+2b=6y+1-(3y+1)/b + 2b = 6y+1−(3y+1)/b+2b=6y+1両辺に bbb を掛けて、−(3y+1)+2b2=(6y+1)b-(3y+1) + 2b^2 = (6y+1)b−(3y+1)+2b2=(6y+1)b2b2−(6y+1)b−(3y+1)=02b^2 - (6y+1)b - (3y+1) = 02b2−(6y+1)b−(3y+1)=0b=(6y+1)±(6y+1)2−4(2)(−3y−1)4b = \frac{(6y+1) \pm \sqrt{(6y+1)^2 - 4(2)(-3y-1)}}{4}b=4(6y+1)±(6y+1)2−4(2)(−3y−1)b=(6y+1)±36y2+12y+1+24y+84b = \frac{(6y+1) \pm \sqrt{36y^2 + 12y + 1 + 24y + 8}}{4}b=4(6y+1)±36y2+12y+1+24y+8b=(6y+1)±36y2+36y+94b = \frac{(6y+1) \pm \sqrt{36y^2 + 36y + 9}}{4}b=4(6y+1)±36y2+36y+9b=(6y+1)±(6y+3)24b = \frac{(6y+1) \pm \sqrt{(6y+3)^2}}{4}b=4(6y+1)±(6y+3)2b=(6y+1)±(6y+3)4b = \frac{(6y+1) \pm (6y+3)}{4}b=4(6y+1)±(6y+3)b=(6y+1)+(6y+3)4=12y+44=3y+1b = \frac{(6y+1) + (6y+3)}{4} = \frac{12y+4}{4} = 3y+1b=4(6y+1)+(6y+3)=412y+4=3y+1b=(6y+1)−(6y+3)4=−24=−12b = \frac{(6y+1) - (6y+3)}{4} = \frac{-2}{4} = -\frac{1}{2}b=4(6y+1)−(6y+3)=4−2=−21b=3y+1b = 3y+1b=3y+1 のとき、a=−(3y+1)3y+1=−1a = \frac{-(3y+1)}{3y+1} = -1a=3y+1−(3y+1)=−1a=−1a = -1a=−1, b=3y+1b = 3y+1b=3y+1 を用いて、2x2+(6y+1)x−(3y+1)=(2x−1)(x+3y+1)2x^2 + (6y+1)x - (3y+1) = (2x-1)(x+3y+1)2x2+(6y+1)x−(3y+1)=(2x−1)(x+3y+1)3. 最終的な答え(2x−1)(x+3y+1)(2x - 1)(x + 3y + 1)(2x−1)(x+3y+1)