和 $\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+3}}$ を求める。解析学級数telescoping sum平方根シグマ2025/5/201. 問題の内容和 ∑k=1n1k+2+k+3\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+3}}∑k=1nk+2+k+31 を求める。2. 解き方の手順まず、分母を有理化する。1k+2+k+3=k+2−k+3(k+2+k+3)(k+2−k+3)=k+2−k+3(k+2)−(k+3)=k+2−k+3−1=k+3−k+2\frac{1}{\sqrt{k+2} + \sqrt{k+3}} = \frac{\sqrt{k+2} - \sqrt{k+3}}{(\sqrt{k+2} + \sqrt{k+3})(\sqrt{k+2} - \sqrt{k+3})} = \frac{\sqrt{k+2} - \sqrt{k+3}}{(k+2) - (k+3)} = \frac{\sqrt{k+2} - \sqrt{k+3}}{-1} = \sqrt{k+3} - \sqrt{k+2}k+2+k+31=(k+2+k+3)(k+2−k+3)k+2−k+3=(k+2)−(k+3)k+2−k+3=−1k+2−k+3=k+3−k+2したがって、∑k=1n1k+2+k+3=∑k=1n(k+3−k+2)\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+3}} = \sum_{k=1}^{n} (\sqrt{k+3} - \sqrt{k+2})∑k=1nk+2+k+31=∑k=1n(k+3−k+2)=(4−3)+(5−4)+(6−5)+⋯+(n+3−n+2)= (\sqrt{4} - \sqrt{3}) + (\sqrt{5} - \sqrt{4}) + (\sqrt{6} - \sqrt{5}) + \cdots + (\sqrt{n+3} - \sqrt{n+2})=(4−3)+(5−4)+(6−5)+⋯+(n+3−n+2)これはtelescoping sumになっているので、=−3+n+3= -\sqrt{3} + \sqrt{n+3}=−3+n+3=n+3−3= \sqrt{n+3} - \sqrt{3}=n+3−33. 最終的な答えn+3−3\sqrt{n+3} - \sqrt{3}n+3−3