$x = -1 + \sqrt{3}i$ (ここで $i$ は虚数単位) のとき、$x^3$ と $x^8 + \frac{1}{x}$ の値を求めよ。代数学複素数代数計算複素数の計算2025/5/201. 問題の内容x=−1+3ix = -1 + \sqrt{3}ix=−1+3i (ここで iii は虚数単位) のとき、x3x^3x3 と x8+1xx^8 + \frac{1}{x}x8+x1 の値を求めよ。2. 解き方の手順まず、x3x^3x3 を計算する。x=−1+3ix = -1 + \sqrt{3}ix=−1+3i なので、x2=(−1+3i)2=(−1)2+2(−1)(3i)+(3i)2=1−23i−3=−2−23ix^2 = (-1 + \sqrt{3}i)^2 = (-1)^2 + 2(-1)(\sqrt{3}i) + (\sqrt{3}i)^2 = 1 - 2\sqrt{3}i - 3 = -2 - 2\sqrt{3}ix2=(−1+3i)2=(−1)2+2(−1)(3i)+(3i)2=1−23i−3=−2−23ix3=x⋅x2=(−1+3i)(−2−23i)=(−1)(−2)+(−1)(−23i)+(3i)(−2)+(3i)(−23i)=2+23i−23i−2(3)i2=2+6=8x^3 = x \cdot x^2 = (-1 + \sqrt{3}i)(-2 - 2\sqrt{3}i) = (-1)(-2) + (-1)(-2\sqrt{3}i) + (\sqrt{3}i)(-2) + (\sqrt{3}i)(-2\sqrt{3}i) = 2 + 2\sqrt{3}i - 2\sqrt{3}i - 2(3)i^2 = 2 + 6 = 8x3=x⋅x2=(−1+3i)(−2−23i)=(−1)(−2)+(−1)(−23i)+(3i)(−2)+(3i)(−23i)=2+23i−23i−2(3)i2=2+6=8次に、x8+1xx^8 + \frac{1}{x}x8+x1 を計算する。x8=(x3)2⋅x2=(8)2⋅(−2−23i)=64(−2−23i)=−128−1283ix^8 = (x^3)^2 \cdot x^2 = (8)^2 \cdot (-2 - 2\sqrt{3}i) = 64(-2 - 2\sqrt{3}i) = -128 - 128\sqrt{3}ix8=(x3)2⋅x2=(8)2⋅(−2−23i)=64(−2−23i)=−128−1283i1x=1−1+3i=−1−3i(−1+3i)(−1−3i)=−1−3i(−1)2−(3i)2=−1−3i1−(−3)=−1−3i4=−14−34i\frac{1}{x} = \frac{1}{-1 + \sqrt{3}i} = \frac{-1 - \sqrt{3}i}{(-1 + \sqrt{3}i)(-1 - \sqrt{3}i)} = \frac{-1 - \sqrt{3}i}{(-1)^2 - (\sqrt{3}i)^2} = \frac{-1 - \sqrt{3}i}{1 - (-3)} = \frac{-1 - \sqrt{3}i}{4} = -\frac{1}{4} - \frac{\sqrt{3}}{4}ix1=−1+3i1=(−1+3i)(−1−3i)−1−3i=(−1)2−(3i)2−1−3i=1−(−3)−1−3i=4−1−3i=−41−43ix8+1x=−128−1283i−14−34i=−5134−51334i=−5134(1+3i)x^8 + \frac{1}{x} = -128 - 128\sqrt{3}i - \frac{1}{4} - \frac{\sqrt{3}}{4}i = -\frac{513}{4} - \frac{513\sqrt{3}}{4}i = -\frac{513}{4}(1 + \sqrt{3}i)x8+x1=−128−1283i−41−43i=−4513−45133i=−4513(1+3i)3. 最終的な答えx3=8x^3 = 8x3=8x8+1x=−513(1+3i)4x^8 + \frac{1}{x} = -\frac{513(1+\sqrt{3}i)}{4}x8+x1=−4513(1+3i)