与えられた式 $(x+y)(x+y-4)$ を展開して、より簡単な形にすることを求められています。

代数学展開多項式因数分解
2025/5/20

1. 問題の内容

与えられた式 (x+y)(x+y4)(x+y)(x+y-4) を展開して、より簡単な形にすることを求められています。

2. 解き方の手順

まず、与えられた式を展開します。
A=x+yA = x+y と置くと、式は A(A4)A(A-4) となります。
この式を展開すると、
A(A4)=A24AA(A-4) = A^2 - 4A
次に、AAx+yx+y に戻します。
(x+y)24(x+y)=(x2+2xy+y2)(4x+4y)(x+y)^2 - 4(x+y) = (x^2 + 2xy + y^2) - (4x + 4y)
整理すると、
x2+2xy+y24x4yx^2 + 2xy + y^2 - 4x - 4y

3. 最終的な答え

x2+2xy+y24x4yx^2 + 2xy + y^2 - 4x - 4y

「代数学」の関連問題

与えられた式の展開式において、指定された項の係数を求める問題です。 (1) $(3x+2)^5$ の $x^3$ の係数 (2) $(2x-3y^2)^8$ の $x^4y^8$ の係数 (3) $(...

二項定理多項定理展開係数
2025/5/20

与えられた2次式 $x^2 + 24x + 144$ を因数分解してください。

因数分解二次式展開
2025/5/20

複素数の計算問題です。 (1) $i + i^2 + i^3 + i^4$ (2) $(1+i)^3$ (3) $i + \frac{1}{i} + \frac{i}{1+i}$ をそれぞれ計算します...

複素数複素数の計算累乗展開
2025/5/20

与えられた等式 $2x^2 + 1 = a(x+1)^2 + b(x+1) + c$ が、$x$ についての恒等式となるように、定数 $a, b, c$ の値を求める問題です。

恒等式多項式係数比較
2025/5/20

2次関数 $y = ax^2 + bx + c$ のグラフが、2次関数 $y = x^2 - 8x + 9$ のグラフと点 $(1, -5)$ に関して対称であるとき、$a, b, c$ の値を求める...

二次関数点対称グラフ平方完成
2025/5/20

2次方程式 $3x^2 - 5x + 1 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、以下の式の値を求める問題です。 (1) $\alpha^2 + \beta^2$ (2...

二次方程式解と係数の関係式の計算解の公式
2025/5/20

問題 (2): $x \geq 0$, $y \geq 0$, $2x + y = 1$ のとき、$2x^2 + y^2$ の最大値と最小値を求めよ。

最大値最小値二次関数不等式条件付き最大・最小
2025/5/20

(1) $a(x+y)^2 + b(x-y)^2 = x^2 + y^2$ が $x, y$ についての恒等式となるように、定数 $a, b$ の値を求めます。 (2) $x^2 - y^2 - ax...

恒等式多項式の展開係数比較
2025/5/20

与えられた式 $y^2 - 6y + 9$ を因数分解する問題です。

因数分解完全平方二次式
2025/5/20

$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$、 $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$ のとき、以下の式の値を求めよ。 (1) $x+y$, ...

式の計算有理化展開代入
2025/5/20