次の式を因数分解する問題です。 (1) $x^2 + 3xy + 2y^2 + 4x + 7y + 3$ (2) $3x^2 + 4xy + y^2 + 7x + y - 6$代数学因数分解二次式多変数2025/5/211. 問題の内容次の式を因数分解する問題です。(1) x2+3xy+2y2+4x+7y+3x^2 + 3xy + 2y^2 + 4x + 7y + 3x2+3xy+2y2+4x+7y+3(2) 3x2+4xy+y2+7x+y−63x^2 + 4xy + y^2 + 7x + y - 63x2+4xy+y2+7x+y−62. 解き方の手順(1)xxx について整理すると、x2+(3y+4)x+(2y2+7y+3)x^2 + (3y+4)x + (2y^2 + 7y + 3)x2+(3y+4)x+(2y2+7y+3)定数項を因数分解すると、2y2+7y+3=(2y+1)(y+3)2y^2 + 7y + 3 = (2y+1)(y+3)2y2+7y+3=(2y+1)(y+3)よって、x2+(3y+4)x+(2y+1)(y+3)=(x+(2y+1))(x+(y+3))x^2 + (3y+4)x + (2y+1)(y+3) = (x+(2y+1))(x+(y+3))x2+(3y+4)x+(2y+1)(y+3)=(x+(2y+1))(x+(y+3))=(x+2y+1)(x+y+3)= (x+2y+1)(x+y+3)=(x+2y+1)(x+y+3)(2)xxx について整理すると、3x2+(4y+7)x+(y2+y−6)3x^2 + (4y+7)x + (y^2+y-6)3x2+(4y+7)x+(y2+y−6)定数項を因数分解すると、y2+y−6=(y+3)(y−2)y^2 + y - 6 = (y+3)(y-2)y2+y−6=(y+3)(y−2)3x2+(4y+7)x+(y+3)(y−2)=(3x+(y−2))(x+(y+3))3x^2 + (4y+7)x + (y+3)(y-2) = (3x + (y-2))(x + (y+3))3x2+(4y+7)x+(y+3)(y−2)=(3x+(y−2))(x+(y+3))=(3x+y−2)(x+y+3)= (3x+y-2)(x+y+3)=(3x+y−2)(x+y+3)3. 最終的な答え(1) (x+2y+1)(x+y+3)(x+2y+1)(x+y+3)(x+2y+1)(x+y+3)(2) (3x+y−2)(x+y+3)(3x+y-2)(x+y+3)(3x+y−2)(x+y+3)