底の変換公式を利用して $\log_4 3 \cdot \log_9 32$ の値を求めよ。

代数学対数底の変換公式計算
2025/3/24

1. 問題の内容

底の変換公式を利用して log43log932\log_4 3 \cdot \log_9 32 の値を求めよ。

2. 解き方の手順

まず、底の変換公式を使って、それぞれの対数を底を2とする対数に変換します。
底の変換公式は、logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a} です。
log43=log23log24=log23log222=log232\log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{\log_2 2^2} = \frac{\log_2 3}{2}
log932=log232log29=log225log232=52log23\log_9 32 = \frac{\log_2 32}{\log_2 9} = \frac{\log_2 2^5}{\log_2 3^2} = \frac{5}{2\log_2 3}
したがって、
log43log932=log23252log23=54\log_4 3 \cdot \log_9 32 = \frac{\log_2 3}{2} \cdot \frac{5}{2\log_2 3} = \frac{5}{4}

3. 最終的な答え

54\frac{5}{4}

「代数学」の関連問題

次の式を計算してください。 $\frac{1}{1-\sqrt{2}} + \frac{1}{1+\sqrt{2}} - \frac{1}{2-\sqrt{2}} - \frac{1}{2+\sqrt...

式の計算有理化分数の計算
2025/8/14

2次方程式 $x^2 + 5x - 6 = 0$ を解け。画像には、解の公式を用いて解いている途中の計算が示されています。

二次方程式解の公式因数分解
2025/8/14

画像に写っている3つの数式問題を解きます。 問題3: $\sqrt{48} + \frac{9}{\sqrt{3}} \times \sqrt{3}$ 問題4: $x + 6 = 2(x + 1)$ ...

平方根の計算一次方程式連立方程式式の計算
2025/8/14

与えられた2次関数 $f(x) = x^2 + 2ax + b$ について、以下の問いに答えます。ただし、$a, b$ は実数の定数で、$a > 0$ です。 (1) $y = f(x)$ のグラフが...

二次関数最大値最小値平方完成
2025/8/14

正の実数 $a$ に対して、実数 $x$ に関する3つの条件 $p, q, r$ が与えられている。 $p: |x-1| \leq a$ $q: |x| \leq \frac{5}{2}$ $r: x...

不等式絶対値必要十分条件命題
2025/8/14

1個250円のケーキを$x$個買ったときの代金を$y$円とするとき、以下の問いに答えます。 (1) $x$と$y$の関係を式で表します。 (2) $x$の値が5のとき、$y$の値を求めます。 (3) ...

一次関数比例方程式
2025/8/14

(1) $A$ を有理数全体の集合、$B$ を無理数全体の集合とする。空集合を $\emptyset$ とする。次の(i)〜(iv)が真の命題になるように、空欄を埋める。 (i) $A$ \_\_ $...

集合命題必要条件十分条件有理数無理数
2025/8/14

1個250円のケーキを $x$ 個買ったときの代金を $y$ 円とするとき、以下の問いに答える。 (1) $x$ と $y$ の関係を式で表す。 (2) $x$ の値が5のとき、$y$ の値を求める。...

一次関数比例方程式
2025/8/14

実数 $a, b, c$ が $a+b+c=1$ および $a^2+b^2+c^2=13$ を満たすとき、以下の値を求めます。 (1) $ab+bc+ca$ および $(a-b)^2+(b-c)^2+...

式の展開連立方程式対称式二次方程式
2025/8/14

与えられた数式 $(15 - 2\sqrt{5}) \div \sqrt{5} - (\sqrt{5} + 2)(\sqrt{5} - 4)$ を計算します。

式の計算根号有理化展開
2025/8/14