与えられた計算式 $(-102) + 0$ を計算し、正しい答えを選択肢から選びます。

算数計算加算負の数
2025/3/24

1. 問題の内容

与えられた計算式 (102)+0(-102) + 0 を計算し、正しい答えを選択肢から選びます。

2. 解き方の手順

負の数である 102-10200 を足します。
00 を足しても値は変わらないため、(102)+0=102(-102) + 0 = -102 となります。

3. 最終的な答え

-102

「算数」の関連問題

台形の面積を求める問題です。上底が3cm、下底が8cm、高さが4cmの台形の面積を計算します。

図形面積台形計算
2025/4/6

全体集合 $U = \{n | 1 \leq n \leq 100, n \text{は整数}\}$ の部分集合 $A = \{x | x \text{は36の約数}\}$ が与えられたとき、$n(\...

集合約数補集合要素数
2025/4/6

全体集合 $U$ が $U = \{n \mid 1 \leq n \leq 100, n \text{は整数}\}$ であり、$U$ の部分集合 $A$ が $A = \{x \mid x \tex...

集合倍数補集合
2025/4/6

全体集合 $U = \{n | 1 \leq n \leq 100, n \text{ は整数} \}$ と、 $U$ の部分集合 $A = \{x | x \text{ は 28 の約数} \}$ ...

集合約数補集合要素の個数
2025/4/6

全体集合$U = \{n | 1 \leq n \leq 100, nは整数\}$と、その部分集合$A = \{x | xは18の約数\}$が与えられたとき、$n(\overline{A})$を求める...

集合補集合約数要素数
2025/4/6

全体集合 $U = \{n | 1 \le n \le 100, n \text{ は整数}\}$ と、その部分集合 $A = \{x | x \text{ は32の約数}\}$ が与えられています。...

集合約数補集合
2025/4/6

全体集合 $U$ が $U = \{n | 1 \le n \le 100, n \text{は整数}\}$ であり、$U$ の部分集合 $A$ が $A = \{x | x \text{は40の約数...

集合約数要素の個数
2025/4/6

全体集合 $U = \{n | 1 \leq n \leq 100, n \text{は整数}\}$ があり、その部分集合 $A = \{x | x \text{は9の倍数}\}$ がある。このとき、...

集合補集合倍数
2025/4/6

全体集合 $U = \{n | 1 \leq n \leq 100, n \text{は整数} \}$ と、その部分集合 $A = \{x | x \text{は40の約数} \}$ が与えられている...

集合約数要素の個数
2025/4/6

集合Aは1以上100以下の偶数全体、集合Bは1以上100以下の15の倍数全体であるとき、$n(A \cup B)$を求めよ。ここで、$n(X)$は集合Xの要素の個数を表し、$A \cup B$はAとB...

集合要素数和集合倍数
2025/4/6