与えられたベクトルの組について、それぞれのなす角$\theta$を求める。代数学ベクトル内積角度三角関数2025/5/221. 問題の内容与えられたベクトルの組について、それぞれのなす角θ\thetaθを求める。2. 解き方の手順ベクトルa⃗\vec{a}aとb⃗\vec{b}bのなす角θ\thetaθは、次の式で求められる。cosθ=a⃗⋅b⃗∣a⃗∣∣b⃗∣ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} cosθ=∣a∣∣b∣a⋅bここで、a⃗⋅b⃗\vec{a} \cdot \vec{b}a⋅bは内積、 ∣a⃗∣|\vec{a}|∣a∣ はベクトルa⃗\vec{a}aの大きさである。(1) a⃗=(2,1),b⃗=(2,6)\vec{a} = (2, 1), \vec{b} = (2, 6)a=(2,1),b=(2,6)a⃗⋅b⃗=(2)(2)+(1)(6)=4+6=10\vec{a} \cdot \vec{b} = (2)(2) + (1)(6) = 4 + 6 = 10a⋅b=(2)(2)+(1)(6)=4+6=10∣a⃗∣=22+12=5|\vec{a}| = \sqrt{2^2 + 1^2} = \sqrt{5}∣a∣=22+12=5∣b⃗∣=22+62=4+36=40=210|\vec{b}| = \sqrt{2^2 + 6^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}∣b∣=22+62=4+36=40=210cosθ=105⋅210=10250=102⋅52=12\cos \theta = \frac{10}{\sqrt{5} \cdot 2\sqrt{10}} = \frac{10}{2\sqrt{50}} = \frac{10}{2 \cdot 5\sqrt{2}} = \frac{1}{\sqrt{2}}cosθ=5⋅21010=25010=2⋅5210=21θ=π4\theta = \frac{\pi}{4}θ=4π(2) a⃗=(3,1),b⃗=(−3,1)\vec{a} = (\sqrt{3}, 1), \vec{b} = (-\sqrt{3}, 1)a=(3,1),b=(−3,1)a⃗⋅b⃗=(3)(−3)+(1)(1)=−3+1=−2\vec{a} \cdot \vec{b} = (\sqrt{3})(-\sqrt{3}) + (1)(1) = -3 + 1 = -2a⋅b=(3)(−3)+(1)(1)=−3+1=−2∣a⃗∣=(3)2+12=3+1=2|\vec{a}| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2∣a∣=(3)2+12=3+1=2∣b⃗∣=(−3)2+12=3+1=2|\vec{b}| = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2∣b∣=(−3)2+12=3+1=2cosθ=−22⋅2=−12\cos \theta = \frac{-2}{2 \cdot 2} = -\frac{1}{2}cosθ=2⋅2−2=−21θ=2π3\theta = \frac{2\pi}{3}θ=32π(3) a⃗=(2,−3),b⃗=(−4,6)\vec{a} = (2, -3), \vec{b} = (-4, 6)a=(2,−3),b=(−4,6)a⃗⋅b⃗=(2)(−4)+(−3)(6)=−8−18=−26\vec{a} \cdot \vec{b} = (2)(-4) + (-3)(6) = -8 - 18 = -26a⋅b=(2)(−4)+(−3)(6)=−8−18=−26∣a⃗∣=22+(−3)2=4+9=13|\vec{a}| = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}∣a∣=22+(−3)2=4+9=13∣b⃗∣=(−4)2+62=16+36=52=213|\vec{b}| = \sqrt{(-4)^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}∣b∣=(−4)2+62=16+36=52=213cosθ=−2613⋅213=−262⋅13=−1\cos \theta = \frac{-26}{\sqrt{13} \cdot 2\sqrt{13}} = \frac{-26}{2 \cdot 13} = -1cosθ=13⋅213−26=2⋅13−26=−1θ=π\theta = \piθ=π(4) a⃗=(23,−2),b⃗=(−1,3)\vec{a} = (2\sqrt{3}, -2), \vec{b} = (-1, \sqrt{3})a=(23,−2),b=(−1,3)a⃗⋅b⃗=(23)(−1)+(−2)(3)=−23−23=−43\vec{a} \cdot \vec{b} = (2\sqrt{3})(-1) + (-2)(\sqrt{3}) = -2\sqrt{3} - 2\sqrt{3} = -4\sqrt{3}a⋅b=(23)(−1)+(−2)(3)=−23−23=−43∣a⃗∣=(23)2+(−2)2=12+4=16=4|\vec{a}| = \sqrt{(2\sqrt{3})^2 + (-2)^2} = \sqrt{12 + 4} = \sqrt{16} = 4∣a∣=(23)2+(−2)2=12+4=16=4∣b⃗∣=(−1)2+(3)2=1+3=4=2|\vec{b}| = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2∣b∣=(−1)2+(3)2=1+3=4=2cosθ=−434⋅2=−32\cos \theta = \frac{-4\sqrt{3}}{4 \cdot 2} = -\frac{\sqrt{3}}{2}cosθ=4⋅2−43=−23θ=5π6\theta = \frac{5\pi}{6}θ=65π(5) a⃗=(3,3),b⃗=(1+3,1−3)\vec{a} = (3, 3), \vec{b} = (1 + \sqrt{3}, 1 - \sqrt{3})a=(3,3),b=(1+3,1−3)a⃗⋅b⃗=(3)(1+3)+(3)(1−3)=3+33+3−33=6\vec{a} \cdot \vec{b} = (3)(1 + \sqrt{3}) + (3)(1 - \sqrt{3}) = 3 + 3\sqrt{3} + 3 - 3\sqrt{3} = 6a⋅b=(3)(1+3)+(3)(1−3)=3+33+3−33=6∣a⃗∣=32+32=9+9=18=32|\vec{a}| = \sqrt{3^2 + 3^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}∣a∣=32+32=9+9=18=32∣b⃗∣=(1+3)2+(1−3)2=1+23+3+1−23+3=8=22|\vec{b}| = \sqrt{(1 + \sqrt{3})^2 + (1 - \sqrt{3})^2} = \sqrt{1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3} + 3} = \sqrt{8} = 2\sqrt{2}∣b∣=(1+3)2+(1−3)2=1+23+3+1−23+3=8=22cosθ=632⋅22=612=12\cos \theta = \frac{6}{3\sqrt{2} \cdot 2\sqrt{2}} = \frac{6}{12} = \frac{1}{2}cosθ=32⋅226=126=21θ=π3\theta = \frac{\pi}{3}θ=3π3. 最終的な答え(1) θ=π4\theta = \frac{\pi}{4}θ=4π(2) θ=2π3\theta = \frac{2\pi}{3}θ=32π(3) θ=π\theta = \piθ=π(4) θ=5π6\theta = \frac{5\pi}{6}θ=65π(5) θ=π3\theta = \frac{\pi}{3}θ=3π