問題文は「孤ABの〇〇を作図しよう。」となっています。〇〇の部分が読めませんが、図から推測すると、弧ABの中心を作図する問題だと思われます。

幾何学作図垂直二等分線中心
2025/5/23

1. 問題の内容

問題文は「孤ABの〇〇を作図しよう。」となっています。〇〇の部分が読めませんが、図から推測すると、弧ABの中心を作図する問題だと思われます。

2. 解き方の手順

弧の中心を作図するには、以下の手順で行います。
ステップ1: 弧AB上に点CをA,Bとは異なる点として選ぶ。
ステップ2: 線分ACの中点を求める。線分ACの垂直二等分線を作図する。
線分ACの中点は、線分AC上にあり、Aからの距離とCからの距離が等しい点である。
垂直二等分線は、線分ACの中点を通り、線分ACと直交する直線である。
ステップ3: 線分BCの中点を求める。線分BCの垂直二等分線を作図する。
ステップ4: 線分ACの垂直二等分線と線分BCの垂直二等分線の交点を求める。この交点が弧ABの中心である。

3. 最終的な答え

問題文が一部欠けているため、正確な答えは特定できませんが、作図の手順に従って弧ABの中心を作図すれば、それが答えとなります。

「幾何学」の関連問題

$n$ 角形の対角線は $\frac{n(n-3)}{2}$ 本である。対角線が54本ある多角形は何角形か求めよ。

多角形対角線二次方程式因数分解
2025/5/23

長方形ABCDにおいて、点PはAを出発し毎秒1cmの速さで辺AB上をBまで、点Qは点Pと同時にBを出発し毎秒2cmの速さで辺BC上をCまで動く。三角形PBQの面積が20cm²になるのは、点PがAを出発...

図形面積二次方程式長方形
2025/5/23

複素数平面上の3点A($\sqrt{3}+2i$), B($10+\sqrt{3}+8i$), C($\gamma$)を頂点とする$\triangle ABC$が正三角形となるような$\gamma$を...

複素数平面正三角形複素数幾何
2025/5/23

長方形の土地の周りに幅4mの道がある。道の面積を $S$ m$^2$、道の中央を通る線の長さを $l$ mとするとき、$S = 4l$ となることを証明する。

面積周の長さ長方形証明
2025/5/23

複素数平面上の3点A($\sqrt{3}+2i$), B($10+\sqrt{3}+8i$), C($\gamma$)を頂点とする三角形ABCが正三角形となるとき、$\gamma$の値を求める問題。

複素数平面正三角形複素数
2025/5/23

直角三角形ABCがあり、$AB = 16$ cm、$BC = 24$ cmです。点PはBを毎秒2 cmの速さでAに向かって動き、点QはCを毎秒3 cmの速さでBに向かって動きます。四角形APQCの面積...

面積直角三角形二次方程式動点四角形
2025/5/23

複素数平面上の3点 A($\sqrt{3}+2i$), B($10+\sqrt{3}+8i$), C($\gamma$) を頂点とする $\triangle ABC$ が正三角形となる時を考える。 (...

複素数平面正三角形複素数
2025/5/23

複素数平面上に3点 $A(\alpha)$, $B(\beta)$, $C(\gamma)$ があり、三角形ABCが正三角形であるとき、$\gamma$を求める問題です。 (1) $\alpha = ...

複素数平面正三角形複素数
2025/5/23

直線 $l: x - 2y + 1 = 0$ と点 $P(2, -1)$ が与えられています。 (1) 直線 $l$ の法線ベクトルを一つ求めます。 (2) 点 $P$ を通り、$l$ に直交する直線...

直線法線ベクトル媒介変数ベクトル
2025/5/23

$\triangle ABC$ において、辺 $BC$, $CA$, $AB$ の中点をそれぞれ $L$, $M$, $N$ とする。任意の点 $O$ に対して、$\overrightarrow{OA...

ベクトル三角形中点証明
2025/5/23