次の2つの式を展開する問題です。 (1) $(x+y)(x+y-2)$ (2) $(x-y+3)(x-y-7)$代数学展開多項式因数分解2025/5/231. 問題の内容次の2つの式を展開する問題です。(1) (x+y)(x+y−2)(x+y)(x+y-2)(x+y)(x+y−2)(2) (x−y+3)(x−y−7)(x-y+3)(x-y-7)(x−y+3)(x−y−7)2. 解き方の手順(1) (x+y)(x+y−2)(x+y)(x+y-2)(x+y)(x+y−2) の展開x+y=Ax+y = Ax+y=A とおくと、(x+y)(x+y−2)=A(A−2)=A2−2A(x+y)(x+y-2) = A(A-2) = A^2 - 2A(x+y)(x+y−2)=A(A−2)=A2−2AAAA を x+yx+yx+y に戻すと、A2−2A=(x+y)2−2(x+y)A^2 - 2A = (x+y)^2 - 2(x+y)A2−2A=(x+y)2−2(x+y)=x2+2xy+y2−2x−2y= x^2 + 2xy + y^2 - 2x - 2y=x2+2xy+y2−2x−2yしたがって、 (x+y)(x+y−2)=x2+2xy+y2−2x−2y(x+y)(x+y-2) = x^2 + 2xy + y^2 - 2x - 2y(x+y)(x+y−2)=x2+2xy+y2−2x−2y(2) (x−y+3)(x−y−7)(x-y+3)(x-y-7)(x−y+3)(x−y−7) の展開x−y=Bx-y = Bx−y=B とおくと、(x−y+3)(x−y−7)=(B+3)(B−7)=B2−4B−21(x-y+3)(x-y-7) = (B+3)(B-7) = B^2 - 4B - 21(x−y+3)(x−y−7)=(B+3)(B−7)=B2−4B−21BBB を x−yx-yx−y に戻すと、B2−4B−21=(x−y)2−4(x−y)−21B^2 - 4B - 21 = (x-y)^2 - 4(x-y) - 21B2−4B−21=(x−y)2−4(x−y)−21=x2−2xy+y2−4x+4y−21= x^2 - 2xy + y^2 - 4x + 4y - 21=x2−2xy+y2−4x+4y−21したがって、 (x−y+3)(x−y−7)=x2−2xy+y2−4x+4y−21(x-y+3)(x-y-7) = x^2 - 2xy + y^2 - 4x + 4y - 21(x−y+3)(x−y−7)=x2−2xy+y2−4x+4y−213. 最終的な答え(1) x2+2xy+y2−2x−2yx^2 + 2xy + y^2 - 2x - 2yx2+2xy+y2−2x−2y(2) x2−2xy+y2−4x+4y−21x^2 - 2xy + y^2 - 4x + 4y - 21x2−2xy+y2−4x+4y−21