与えられた5つの不定積分を計算し、空欄を埋める問題です。解析学積分不定積分log関数三角関数部分積分2025/5/241. 問題の内容与えられた5つの不定積分を計算し、空欄を埋める問題です。2. 解き方の手順(1) ∫(x+2)3x3dx=∫x3+6x2+12x+8x3dx=∫(1+6x+12x2+8x3)dx\int \frac{(x+2)^3}{x^3} dx = \int \frac{x^3+6x^2+12x+8}{x^3} dx = \int (1+\frac{6}{x}+\frac{12}{x^2}+\frac{8}{x^3}) dx∫x3(x+2)3dx=∫x3x3+6x2+12x+8dx=∫(1+x6+x212+x38)dx =∫(1+6x+12x−2+8x−3)dx=x+6log∣x∣+12x−1−1+8x−2−2+C= \int (1+\frac{6}{x}+12x^{-2}+8x^{-3}) dx = x+6\log|x|+12\frac{x^{-1}}{-1}+8\frac{x^{-2}}{-2}+C=∫(1+x6+12x−2+8x−3)dx=x+6log∣x∣+12−1x−1+8−2x−2+C =x+6log∣x∣−12x−4x2+C= x+6\log|x|-\frac{12}{x}-\frac{4}{x^2}+C=x+6log∣x∣−x12−x24+C(2) ∫3x2logxdx=logx∫3x2dx−∫(1x∫3x2dx)dx=x3logx−∫(1xx3)dx\int 3x^2\log x dx = \log x \int 3x^2 dx - \int (\frac{1}{x} \int 3x^2 dx) dx = x^3\log x - \int (\frac{1}{x}x^3)dx∫3x2logxdx=logx∫3x2dx−∫(x1∫3x2dx)dx=x3logx−∫(x1x3)dx=x3logx−∫x2dx=x3logx−13x3+C= x^3\log x - \int x^2dx = x^3\log x - \frac{1}{3}x^3 + C=x3logx−∫x2dx=x3logx−31x3+C(3) ∫(5x+3)e2xdx=(5x+3)∫e2xdx−∫(5∫e2xdx)dx=(5x+3)12e2x−∫5(12e2x)dx\int (5x+3)e^{2x} dx = (5x+3)\int e^{2x} dx - \int (5 \int e^{2x}dx)dx = (5x+3)\frac{1}{2}e^{2x}-\int 5(\frac{1}{2}e^{2x})dx∫(5x+3)e2xdx=(5x+3)∫e2xdx−∫(5∫e2xdx)dx=(5x+3)21e2x−∫5(21e2x)dx=52xe2x+32e2x−52∫e2xdx=52xe2x+32e2x−5212e2x+C= \frac{5}{2}xe^{2x}+\frac{3}{2}e^{2x} - \frac{5}{2}\int e^{2x} dx = \frac{5}{2}xe^{2x}+\frac{3}{2}e^{2x} - \frac{5}{2}\frac{1}{2}e^{2x}+C=25xe2x+23e2x−25∫e2xdx=25xe2x+23e2x−2521e2x+C=52xe2x+32e2x−54e2x+C=52xe2x+14e2x+C=(104x+14)e2x+C= \frac{5}{2}xe^{2x} + \frac{3}{2}e^{2x} - \frac{5}{4}e^{2x}+C = \frac{5}{2}xe^{2x} + \frac{1}{4}e^{2x}+C = (\frac{10}{4}x+\frac{1}{4})e^{2x}+C=25xe2x+23e2x−45e2x+C=25xe2x+41e2x+C=(410x+41)e2x+C(4) ∫log(3x)dx=∫(log3+logx)dx=(log3)x+∫logxdx\int \log(3x) dx = \int (\log 3 + \log x) dx = (\log 3)x + \int \log x dx∫log(3x)dx=∫(log3+logx)dx=(log3)x+∫logxdx∫logxdx=xlogx−∫x1xdx=xlogx−∫1dx=xlogx−x+C\int \log x dx = x\log x - \int x\frac{1}{x} dx = x\log x - \int 1 dx = x\log x - x + C∫logxdx=xlogx−∫xx1dx=xlogx−∫1dx=xlogx−x+C∫log(3x)dx=xlog3+xlogx−x+C=x(log3+logx)−x+C=xlog(3x)−x+C=11(xlog(3x)−x)+C=11(xlog(3x)−x)+C\int \log(3x) dx = x\log 3 + x\log x - x + C = x(\log 3 + \log x) - x + C = x\log (3x) - x + C = \frac{1}{1}(x\log(3x)-x)+C = \frac{1}{1}(x\log(3x)-x)+C∫log(3x)dx=xlog3+xlogx−x+C=x(log3+logx)−x+C=xlog(3x)−x+C=11(xlog(3x)−x)+C=11(xlog(3x)−x)+C∫log(3x)dx=xlog(3x)−x+C=1⋅xlog(3x)−1⋅x+C\int \log(3x) dx = x\log(3x) - x + C = 1\cdot x \log(3x) - 1\cdot x + C ∫log(3x)dx=xlog(3x)−x+C=1⋅xlog(3x)−1⋅x+C∫log(3x)dx=∫1⋅log(3x)dx=xlog(3x)−∫x⋅33xdx=xlog(3x)−∫1dx=xlog(3x)−x+C=11xlog(3x)−11x+C\int \log(3x) dx = \int 1\cdot \log(3x) dx = x\log(3x) - \int x \cdot \frac{3}{3x} dx = x\log(3x) - \int 1 dx = x\log(3x) - x + C = \frac{1}{1}x\log(3x)-\frac{1}{1}x + C∫log(3x)dx=∫1⋅log(3x)dx=xlog(3x)−∫x⋅3x3dx=xlog(3x)−∫1dx=xlog(3x)−x+C=11xlog(3x)−11x+C=1⋅(xlog(3x)−x)+C=1((1x−0)log(3x)−x)+C= 1 \cdot (x\log(3x)-x)+C = 1((1x-0)\log(3x) - x) + C=1⋅(xlog(3x)−x)+C=1((1x−0)log(3x)−x)+C.Then x(log(3x)−1)+Cx(\log(3x) - 1)+Cx(log(3x)−1)+C.I=(x(log(3x)−1)+CI = (x(\log(3x) - 1)+CI=(x(log(3x)−1)+C. ddxI=log(3x)−1+x33x=log(3x)−1+1=log(3x)\frac{d}{dx} I = \log(3x)-1 +x \frac{3}{3x} = \log(3x)-1+1 = \log(3x)dxdI=log(3x)−1+x3x3=log(3x)−1+1=log(3x).(5) ∫sin6xcos2xdx=∫12(sin(6x+2x)+sin(6x−2x))dx=12∫(sin8x+sin4x)dx\int \sin 6x \cos 2x dx = \int \frac{1}{2}(\sin(6x+2x)+\sin(6x-2x)) dx = \frac{1}{2}\int (\sin 8x + \sin 4x) dx∫sin6xcos2xdx=∫21(sin(6x+2x)+sin(6x−2x))dx=21∫(sin8x+sin4x)dx=12(−18cos8x−14cos4x)+C=−116cos8x−18cos4x+C= \frac{1}{2}(-\frac{1}{8}\cos 8x - \frac{1}{4}\cos 4x) + C = -\frac{1}{16}\cos 8x - \frac{1}{8}\cos 4x + C=21(−81cos8x−41cos4x)+C=−161cos8x−81cos4x+C3. 最終的な答え(1) 1:6, 2:12, 3:1, 4:4(2) 5:3(3) 6:10, 7:4, 8:1, 9:2(4) 10:1, 11:1, 12:0, 13:3, 14:0(5) 15:1, 16:16, 17:8, 18:1, 19:8