数列 $\sum_{k=1}^{n} (3k+1)(2k-3)$ を計算して、その値を求めます。代数学数列級数シグマ展開公式2025/5/251. 問題の内容数列 ∑k=1n(3k+1)(2k−3)\sum_{k=1}^{n} (3k+1)(2k-3)∑k=1n(3k+1)(2k−3) を計算して、その値を求めます。2. 解き方の手順まず、(3k+1)(2k−3)(3k+1)(2k-3)(3k+1)(2k−3)を展開します。(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3(3k+1)(2k-3) = 6k^2 -9k + 2k - 3 = 6k^2 -7k - 3(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3次に、∑k=1n(6k2−7k−3)\sum_{k=1}^{n} (6k^2 - 7k - 3)∑k=1n(6k2−7k−3) を計算します。∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1\sum_{k=1}^{n} (6k^2 - 7k - 3) = 6\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k - 3\sum_{k=1}^{n} 1∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1ここで、次の公式を利用します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nしたがって、6∑k=1nk2=6⋅n(n+1)(2n+1)6=n(n+1)(2n+1)=2n3+3n2+n6\sum_{k=1}^{n} k^2 = 6 \cdot \frac{n(n+1)(2n+1)}{6} = n(n+1)(2n+1) = 2n^3 + 3n^2 + n6∑k=1nk2=6⋅6n(n+1)(2n+1)=n(n+1)(2n+1)=2n3+3n2+n7∑k=1nk=7⋅n(n+1)2=7n2+7n27\sum_{k=1}^{n} k = 7 \cdot \frac{n(n+1)}{2} = \frac{7n^2 + 7n}{2}7∑k=1nk=7⋅2n(n+1)=27n2+7n3∑k=1n1=3n3\sum_{k=1}^{n} 1 = 3n3∑k=1n1=3n∑k=1n(6k2−7k−3)=(2n3+3n2+n)−(7n2+7n2)−3n=2n3+3n2+n−72n2−72n−3n\sum_{k=1}^{n} (6k^2 - 7k - 3) = (2n^3 + 3n^2 + n) - (\frac{7n^2 + 7n}{2}) - 3n = 2n^3 + 3n^2 + n - \frac{7}{2}n^2 - \frac{7}{2}n - 3n∑k=1n(6k2−7k−3)=(2n3+3n2+n)−(27n2+7n)−3n=2n3+3n2+n−27n2−27n−3n=2n3+(3−72)n2+(1−72−3)n=2n3+6−72n2+2−7−62n= 2n^3 + (3 - \frac{7}{2})n^2 + (1 - \frac{7}{2} - 3)n = 2n^3 + \frac{6-7}{2}n^2 + \frac{2-7-6}{2}n=2n3+(3−27)n2+(1−27−3)n=2n3+26−7n2+22−7−6n=2n3−12n2−112n=4n3−n2−11n2=n(4n2−n−11)2= 2n^3 - \frac{1}{2}n^2 - \frac{11}{2}n = \frac{4n^3 - n^2 - 11n}{2} = \frac{n(4n^2 - n - 11)}{2}=2n3−21n2−211n=24n3−n2−11n=2n(4n2−n−11)3. 最終的な答えn(4n2−n−11)2\frac{n(4n^2 - n - 11)}{2}2n(4n2−n−11)