問題は、$\sum_{k=1}^{n} (3k+1)(2k-3)$ を計算することです。代数学級数シグマ多項式2025/5/251. 問題の内容問題は、∑k=1n(3k+1)(2k−3)\sum_{k=1}^{n} (3k+1)(2k-3)∑k=1n(3k+1)(2k−3) を計算することです。2. 解き方の手順まず、(3k+1)(2k−3)(3k+1)(2k-3)(3k+1)(2k−3) を展開します。(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3(3k+1)(2k-3) = 6k^2 - 9k + 2k - 3 = 6k^2 - 7k - 3(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3次に、∑k=1n(6k2−7k−3)\sum_{k=1}^{n} (6k^2 - 7k - 3)∑k=1n(6k2−7k−3) を計算します。∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1\sum_{k=1}^{n} (6k^2 - 7k - 3) = 6\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k - 3\sum_{k=1}^{n} 1∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nしたがって、6∑k=1nk2−7∑k=1nk−3∑k=1n1=6n(n+1)(2n+1)6−7n(n+1)2−3n6\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k - 3\sum_{k=1}^{n} 1 = 6\frac{n(n+1)(2n+1)}{6} - 7\frac{n(n+1)}{2} - 3n6∑k=1nk2−7∑k=1nk−3∑k=1n1=66n(n+1)(2n+1)−72n(n+1)−3n=n(n+1)(2n+1)−72n(n+1)−3n= n(n+1)(2n+1) - \frac{7}{2}n(n+1) - 3n=n(n+1)(2n+1)−27n(n+1)−3n=n[(n+1)(2n+1)−72(n+1)−3]= n[(n+1)(2n+1) - \frac{7}{2}(n+1) - 3]=n[(n+1)(2n+1)−27(n+1)−3]=n[2n2+3n+1−72n−72−3]= n[2n^2 + 3n + 1 - \frac{7}{2}n - \frac{7}{2} - 3]=n[2n2+3n+1−27n−27−3]=n[2n2−12n−132]= n[2n^2 - \frac{1}{2}n - \frac{13}{2}]=n[2n2−21n−213]=n2[4n2−n−13]= \frac{n}{2} [4n^2 - n - 13]=2n[4n2−n−13]=4n3−n2−13n2= \frac{4n^3 - n^2 - 13n}{2}=24n3−n2−13n3. 最終的な答え∑k=1n(3k+1)(2k−3)=4n3−n2−13n2\sum_{k=1}^{n} (3k+1)(2k-3) = \frac{4n^3 - n^2 - 13n}{2}∑k=1n(3k+1)(2k−3)=24n3−n2−13nあるいは∑k=1n(3k+1)(2k−3)=2n3−12n2−132n\sum_{k=1}^{n} (3k+1)(2k-3) = 2n^3 - \frac{1}{2}n^2 - \frac{13}{2}n∑k=1n(3k+1)(2k−3)=2n3−21n2−213n