与えられた数列の和 $\sum_{k=1}^{n} (3k+1)(2k-3)$ を計算せよ。代数学数列シグマ展開公式適用2025/5/251. 問題の内容与えられた数列の和 ∑k=1n(3k+1)(2k−3)\sum_{k=1}^{n} (3k+1)(2k-3)∑k=1n(3k+1)(2k−3) を計算せよ。2. 解き方の手順まず、シグマの中の式を展開します。(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3(3k+1)(2k-3) = 6k^2 -9k + 2k - 3 = 6k^2 - 7k - 3(3k+1)(2k−3)=6k2−9k+2k−3=6k2−7k−3したがって、∑k=1n(3k+1)(2k−3)=∑k=1n(6k2−7k−3)\sum_{k=1}^{n} (3k+1)(2k-3) = \sum_{k=1}^{n} (6k^2 - 7k - 3)∑k=1n(3k+1)(2k−3)=∑k=1n(6k2−7k−3)シグマを分割します。∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1\sum_{k=1}^{n} (6k^2 - 7k - 3) = 6 \sum_{k=1}^{n} k^2 - 7 \sum_{k=1}^{n} k - 3 \sum_{k=1}^{n} 1∑k=1n(6k2−7k−3)=6∑k=1nk2−7∑k=1nk−3∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入すると、6∑k=1nk2−7∑k=1nk−3∑k=1n1=6⋅n(n+1)(2n+1)6−7⋅n(n+1)2−3n6 \sum_{k=1}^{n} k^2 - 7 \sum_{k=1}^{n} k - 3 \sum_{k=1}^{n} 1 = 6 \cdot \frac{n(n+1)(2n+1)}{6} - 7 \cdot \frac{n(n+1)}{2} - 3n6∑k=1nk2−7∑k=1nk−3∑k=1n1=6⋅6n(n+1)(2n+1)−7⋅2n(n+1)−3n=n(n+1)(2n+1)−72n(n+1)−3n= n(n+1)(2n+1) - \frac{7}{2} n(n+1) - 3n=n(n+1)(2n+1)−27n(n+1)−3n=n[(n+1)(2n+1)−72(n+1)−3]= n \left[ (n+1)(2n+1) - \frac{7}{2} (n+1) - 3 \right]=n[(n+1)(2n+1)−27(n+1)−3]=n[2n2+3n+1−72n−72−3]= n \left[ 2n^2 + 3n + 1 - \frac{7}{2}n - \frac{7}{2} - 3 \right]=n[2n2+3n+1−27n−27−3]=n[2n2+3n−72n+1−72−3]= n \left[ 2n^2 + 3n - \frac{7}{2}n + 1 - \frac{7}{2} - 3 \right]=n[2n2+3n−27n+1−27−3]=n[2n2−12n−112]= n \left[ 2n^2 - \frac{1}{2}n - \frac{11}{2} \right]=n[2n2−21n−211]=n2[4n2−n−11]= \frac{n}{2} \left[ 4n^2 - n - 11 \right]=2n[4n2−n−11]=4n3−n2−11n2= \frac{4n^3 - n^2 - 11n}{2}=24n3−n2−11n3. 最終的な答え4n3−n2−11n2\frac{4n^3 - n^2 - 11n}{2}24n3−n2−11n