$x = \frac{2}{\sqrt{6}-2}$、$y = \frac{2}{\sqrt{6}+2}$ のとき、以下の値を求めよ。 (1) $x+y$ (2) $xy$ (3) $x^2 + y^2$ (4) $x^3 + y^3$代数学式の計算有理化平方根展開2025/5/251. 問題の内容x=26−2x = \frac{2}{\sqrt{6}-2}x=6−22、y=26+2y = \frac{2}{\sqrt{6}+2}y=6+22 のとき、以下の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2 + y^2x2+y2(4) x3+y3x^3 + y^3x3+y32. 解き方の手順まず、xxxとyyyをそれぞれ有理化する。x=26−2=2(6+2)(6−2)(6+2)=2(6+2)6−4=2(6+2)2=6+2x = \frac{2}{\sqrt{6}-2} = \frac{2(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)} = \frac{2(\sqrt{6}+2)}{6-4} = \frac{2(\sqrt{6}+2)}{2} = \sqrt{6}+2x=6−22=(6−2)(6+2)2(6+2)=6−42(6+2)=22(6+2)=6+2y=26+2=2(6−2)(6+2)(6−2)=2(6−2)6−4=2(6−2)2=6−2y = \frac{2}{\sqrt{6}+2} = \frac{2(\sqrt{6}-2)}{(\sqrt{6}+2)(\sqrt{6}-2)} = \frac{2(\sqrt{6}-2)}{6-4} = \frac{2(\sqrt{6}-2)}{2} = \sqrt{6}-2y=6+22=(6+2)(6−2)2(6−2)=6−42(6−2)=22(6−2)=6−2(1) x+y=(6+2)+(6−2)=26x+y = (\sqrt{6}+2) + (\sqrt{6}-2) = 2\sqrt{6}x+y=(6+2)+(6−2)=26(2) xy=(6+2)(6−2)=6−4=2xy = (\sqrt{6}+2)(\sqrt{6}-2) = 6-4 = 2xy=(6+2)(6−2)=6−4=2(3) x2+y2=(x+y)2−2xy=(26)2−2(2)=4⋅6−4=24−4=20x^2 + y^2 = (x+y)^2 - 2xy = (2\sqrt{6})^2 - 2(2) = 4 \cdot 6 - 4 = 24 - 4 = 20x2+y2=(x+y)2−2xy=(26)2−2(2)=4⋅6−4=24−4=20(4) x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=26((26)2−3(2))=26(24−6)=26(18)=366x^3 + y^3 = (x+y)(x^2 - xy + y^2) = (x+y)((x+y)^2 - 3xy) = 2\sqrt{6}((2\sqrt{6})^2 - 3(2)) = 2\sqrt{6}(24-6) = 2\sqrt{6}(18) = 36\sqrt{6}x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=26((26)2−3(2))=26(24−6)=26(18)=3663. 最終的な答え(1) x+y=26x+y = 2\sqrt{6}x+y=26(2) xy=2xy = 2xy=2(3) x2+y2=20x^2 + y^2 = 20x2+y2=20(4) x3+y3=366x^3 + y^3 = 36\sqrt{6}x3+y3=366