三角形ABCにおいて、$a=5$, $b=\sqrt{7}$, $c=2\sqrt{3}$のとき、角Bの大きさを求める問題です。

幾何学三角形余弦定理三角関数角度
2025/3/8

1. 問題の内容

三角形ABCにおいて、a=5a=5, b=7b=\sqrt{7}, c=23c=2\sqrt{3}のとき、角Bの大きさを求める問題です。

2. 解き方の手順

余弦定理を用いて角Bを求めます。余弦定理は、
b2=a2+c22accosBb^2 = a^2 + c^2 - 2ac\cos{B}
と表されます。この式をcosB\cos{B}について解くと、
cosB=a2+c2b22ac\cos{B} = \frac{a^2 + c^2 - b^2}{2ac}
となります。
与えられた値を代入すると、
cosB=52+(23)2(7)22523=25+127203=30203=323=32\cos{B} = \frac{5^2 + (2\sqrt{3})^2 - (\sqrt{7})^2}{2 \cdot 5 \cdot 2\sqrt{3}} = \frac{25 + 12 - 7}{20\sqrt{3}} = \frac{30}{20\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}
cosB=32\cos{B} = \frac{\sqrt{3}}{2}となる角Bは、B=30B=30^\circです。

3. 最終的な答え

B=30B = 30^\circ

「幾何学」の関連問題

三角形ABCにおいて、$AB=6$, $CA=4$, $\angle A=150^\circ$のとき、三角形ABCの面積を求めます。

三角形面積三角関数sin
2025/4/5

三角形ABCにおいて、AB=7, CA=5, 角A=60度のとき、BCの長さを求める問題です。

三角形余弦定理辺の長さ
2025/4/5

$\theta$ は鋭角であり、$\sin \theta = \frac{2\sqrt{5}}{5}$ が与えられています。$\cos \theta$ と $\tan \theta$ の値を求めます。

三角関数三角比鋭角cossintan三角恒等式
2025/4/5

四角形ABCDにおいて、AB = $1 + \sqrt{3}$、BC = 2、DA = $2\sqrt{2}$、∠A = 105°、∠B = 60°である。対角線ACの長さを求め、さらに四角形ABCD...

四角形余弦定理面積三角比
2025/4/5

三角形ABCにおいて、$a=3$, $b=5$, $c=7$のとき、角Cの大きさと内接円の半径を求める問題です。

三角形余弦定理内接円三角比
2025/4/5

三角形ABCにおいて、$a=5$, $c=4$, $B=120^\circ$のとき、面積を求める問題です。求める面積は ス$\sqrt{セ}$ の形で表されます。

三角形面積三角関数正弦角度
2025/4/5

三角形ABCにおいて、$a=2$, $c=1+\sqrt{3}$, $B=30^\circ$のとき、残りの辺の長さ$b$と角の大きさ$A$, $C$を求める問題です。

三角形余弦定理正弦定理辺の長さ角度
2025/4/5

図に示す斜線部の面積を求める問題です。図形は正方形から4つの角にある直角三角形を切り取ったものと考えられます。

面積正方形三角形図形計算
2025/4/5

円Oにおいて、ABは直径であり、C, Dは円周上の点である。4点A, C, B, Dは図の順に並んでいる。弧BCの長さは弧ADの長さの2倍であり、$\angle BDC = 34^\circ$である。...

円周角角度図形相似
2025/4/5

問題は2つあります。 (1) $\triangle BMR \sim \triangle DQT$ であることを証明する。 (2) 図2において、$MP:PC = 3:1$ のとき、線分 $ST$ の...

相似長方形図形証明
2025/4/5