## 1. 問題の内容解析学極限マクローリン展開三角関数2025/5/25##1. 問題の内容(1) limx→0sin2x−x2cosx2−2cosx−xsinx\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos x}{2 - 2 \cos x - x \sin x}limx→02−2cosx−xsinxsin2x−x2cosx を求めよ。(2) limx→04(1−cosx)2−x4(x−sinx)2\lim_{x \to 0} \frac{4 (1 - \cos x)^2 - x^4}{(x - \sin x)^2}limx→0(x−sinx)24(1−cosx)2−x4 を求めよ。##2. 解き方の手順**(1) limx→0sin2x−x2cosx2−2cosx−xsinx\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos x}{2 - 2 \cos x - x \sin x}limx→02−2cosx−xsinxsin2x−x2cosx**まず、sinx\sin xsinx と cosx\cos xcosx のマクローリン展開を利用します。sinx=x−x33!+x55!−⋯\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdotssinx=x−3!x3+5!x5−⋯cosx=1−x22!+x44!−⋯\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdotscosx=1−2!x2+4!x4−⋯これらを代入して、sin2x=(x−x36+⋯ )2=x2−x43+O(x6)\sin^2 x = (x - \frac{x^3}{6} + \cdots)^2 = x^2 - \frac{x^4}{3} + O(x^6)sin2x=(x−6x3+⋯)2=x2−3x4+O(x6)x2cosx=x2(1−x22+⋯ )=x2−x42+O(x6)x^2 \cos x = x^2 (1 - \frac{x^2}{2} + \cdots) = x^2 - \frac{x^4}{2} + O(x^6)x2cosx=x2(1−2x2+⋯)=x2−2x4+O(x6)2−2cosx=2−2(1−x22+x424−⋯ )=x2−x412+O(x6)2 - 2 \cos x = 2 - 2(1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots) = x^2 - \frac{x^4}{12} + O(x^6)2−2cosx=2−2(1−2x2+24x4−⋯)=x2−12x4+O(x6)xsinx=x(x−x36+⋯ )=x2−x46+O(x6)x \sin x = x(x - \frac{x^3}{6} + \cdots) = x^2 - \frac{x^4}{6} + O(x^6)xsinx=x(x−6x3+⋯)=x2−6x4+O(x6)分子は、sin2x−x2cosx=(x2−x43+⋯ )−(x2−x42+⋯ )=x46+O(x6)\sin^2 x - x^2 \cos x = (x^2 - \frac{x^4}{3} + \cdots) - (x^2 - \frac{x^4}{2} + \cdots) = \frac{x^4}{6} + O(x^6)sin2x−x2cosx=(x2−3x4+⋯)−(x2−2x4+⋯)=6x4+O(x6)分母は、2−2cosx−xsinx=(x2−x412+⋯ )−(x2−x46+⋯ )=x412+O(x6)2 - 2 \cos x - x \sin x = (x^2 - \frac{x^4}{12} + \cdots) - (x^2 - \frac{x^4}{6} + \cdots) = \frac{x^4}{12} + O(x^6)2−2cosx−xsinx=(x2−12x4+⋯)−(x2−6x4+⋯)=12x4+O(x6)したがって、limx→0sin2x−x2cosx2−2cosx−xsinx=limx→0x46+O(x6)x412+O(x6)=1/61/12=2\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos x}{2 - 2 \cos x - x \sin x} = \lim_{x \to 0} \frac{\frac{x^4}{6} + O(x^6)}{\frac{x^4}{12} + O(x^6)} = \frac{1/6}{1/12} = 2limx→02−2cosx−xsinxsin2x−x2cosx=limx→012x4+O(x6)6x4+O(x6)=1/121/6=2**(2) limx→04(1−cosx)2−x4(x−sinx)2\lim_{x \to 0} \frac{4 (1 - \cos x)^2 - x^4}{(x - \sin x)^2}limx→0(x−sinx)24(1−cosx)2−x4**sinx\sin xsinx と cosx\cos xcosx のマクローリン展開を利用します。1−cosx=x22−x424+x6720−⋯1 - \cos x = \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720} - \cdots1−cosx=2x2−24x4+720x6−⋯(1−cosx)2=(x22−x424+⋯ )2=x44−x624+O(x8)(1 - \cos x)^2 = (\frac{x^2}{2} - \frac{x^4}{24} + \cdots)^2 = \frac{x^4}{4} - \frac{x^6}{24} + O(x^8)(1−cosx)2=(2x2−24x4+⋯)2=4x4−24x6+O(x8)4(1−cosx)2=x4−x66+O(x8)4 (1 - \cos x)^2 = x^4 - \frac{x^6}{6} + O(x^8)4(1−cosx)2=x4−6x6+O(x8)4(1−cosx)2−x4=−x66+O(x8)4 (1 - \cos x)^2 - x^4 = -\frac{x^6}{6} + O(x^8)4(1−cosx)2−x4=−6x6+O(x8)x−sinx=x−(x−x36+x5120−⋯ )=x36−x5120+⋯x - \sin x = x - (x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots) = \frac{x^3}{6} - \frac{x^5}{120} + \cdotsx−sinx=x−(x−6x3+120x5−⋯)=6x3−120x5+⋯(x−sinx)2=(x36−x5120+⋯ )2=x636−x8360+O(x10)(x - \sin x)^2 = (\frac{x^3}{6} - \frac{x^5}{120} + \cdots)^2 = \frac{x^6}{36} - \frac{x^8}{360} + O(x^{10})(x−sinx)2=(6x3−120x5+⋯)2=36x6−360x8+O(x10)したがって、limx→04(1−cosx)2−x4(x−sinx)2=limx→0−x66+O(x8)x636+O(x8)=−1/61/36=−6\lim_{x \to 0} \frac{4 (1 - \cos x)^2 - x^4}{(x - \sin x)^2} = \lim_{x \to 0} \frac{-\frac{x^6}{6} + O(x^8)}{\frac{x^6}{36} + O(x^8)} = \frac{-1/6}{1/36} = -6limx→0(x−sinx)24(1−cosx)2−x4=limx→036x6+O(x8)−6x6+O(x8)=1/36−1/6=−6##3. 最終的な答え(1) 2(2) -6