与えられた式 $16x^2 - 40xy + 25y^2$ を因数分解します。

代数学因数分解完全平方式多項式
2025/5/25

1. 問題の内容

与えられた式 16x240xy+25y216x^2 - 40xy + 25y^2 を因数分解します。

2. 解き方の手順

この式は、完全平方式の形をしている可能性があります。完全平方式は (axby)2=a2x22abxy+b2y2(ax - by)^2 = a^2x^2 - 2abxy + b^2y^2 のように展開されます。
与えられた式と比較すると、以下のようになります。
a2=16a^2 = 16 なので a=4a = 4
b2=25b^2 = 25 なので b=5b = 5
2ab=2(4)(5)=40-2ab = -2(4)(5) = -40 となり、中央の項と一致します。
したがって、与えられた式は (4x5y)2(4x - 5y)^2 と因数分解できます。

3. 最終的な答え

(4x5y)2(4x - 5y)^2

「代数学」の関連問題

$a = \frac{2}{3+\sqrt{7}}$, $b = \frac{2}{3-\sqrt{7}}$ とする。 このとき、$ab$, $a+b$, $a^2+b^2$ の値を求め、$b^4 +...

式の計算有理化平方根式の展開分数式
2025/5/25

$a = \frac{2}{3+\sqrt{7}}$, $b = \frac{2}{3-\sqrt{7}}$ のとき、$ab$, $a+b$, $a^2 + b^2$ の値を求めよ。

式の計算有理化平方根式の展開因数分解
2025/5/25

与えられた連立不等式を解き、$x$ の範囲を求める問題です。 連立不等式は以下の通りです。 $\begin{cases} -4 \le -5x + 8 \\ -5x + 8 \le 3 \end{ca...

連立不等式不等式一次不等式
2025/5/25

ベクトル $\vec{a} = (1, -3)$ と $\vec{b} = (-2, 1)$ が与えられたとき、以下のベクトルを成分で表し、その大きさを求めます。 (1) $3\vec{a}$ (2)...

ベクトルベクトルの演算ベクトルの大きさ
2025/5/25

50円のお菓子と80円のお菓子を合わせて15個買う。合計金額が1000円以下になるように、80円のお菓子をなるべく多く買うとき、それぞれのお菓子の個数を求める。

一次不等式文章題連立方程式
2025/5/25

与えられた連立不等式を解く問題です。 連立不等式は次の通りです。 $ \begin{cases} 2x + 3 \le \frac{1}{2}x - 2 \\ x - 3 \ge 6x + 7 \en...

連立不等式不等式一次不等式
2025/5/25

次の連立不等式を解きます。 $ \begin{cases} 3x+1 > 2x - 4 \\ x - 1 \le -x + 3 \end{cases} $

連立不等式不等式数直線
2025/5/25

ベクトル $x$ と $y$ に関する連立方程式 $\begin{cases} 3x + y = a \\ x - y = b \end{cases}$ を解き、$x$ と $y$ を $a$ と $...

連立方程式ベクトル線形代数
2025/5/25

4次正方行列 $ \begin{vmatrix} a & b & c & d \\ b & a & d & c \end{vmatrix} $ の行列式を2通りの方法で計算することで、 $ (a^2 ...

行列式行列展開等式の証明
2025/5/25

与えられた連立不等式 $ \begin{cases} 3 < 4x - 5 \\ 4x - 5 < 15 \end{cases} $ を解き、$x$の範囲を求める問題です。

不等式連立不等式一次不等式
2025/5/25