与えられた数式 $0^2 - 15.0^2 = 2a' \times 25$ を解き、$a'$ の値を求めます。

代数学方程式数値計算平方
2025/5/25

1. 問題の内容

与えられた数式 0215.02=2a×250^2 - 15.0^2 = 2a' \times 25 を解き、aa' の値を求めます。

2. 解き方の手順

まず、数式を簡略化します。
02=00^2 = 0 であるため、数式は 15.02=2a×25-15.0^2 = 2a' \times 25 となります。
15.0215.0^2 を計算します。
15.02=15.0×15.0=22515.0^2 = 15.0 \times 15.0 = 225
したがって、数式は 225=2a×25-225 = 2a' \times 25 となります。
次に、2a×252a' \times 25 を計算します。
2a×25=50a2a' \times 25 = 50a'
数式は 225=50a-225 = 50a' となります。
aa' について解くために、両辺を 5050 で割ります。
a=22550a' = \frac{-225}{50}
aa' を簡略化します。
a=92a' = -\frac{9}{2}
a=4.5a' = -4.5

3. 最終的な答え

a=4.5a' = -4.5

「代数学」の関連問題

与えられた連立不等式 $-4(x-1) < 2x + 1 \leq 4x - 5$ を解き、$x$ の範囲を求めます。

不等式連立不等式一次不等式
2025/5/25

$a = \frac{2}{3+\sqrt{7}}$, $b = \frac{2}{3-\sqrt{7}}$ とする。 このとき、$ab$, $a+b$, $a^2+b^2$ の値を求め、$b^4 +...

式の計算有理化平方根式の展開分数式
2025/5/25

$a = \frac{2}{3+\sqrt{7}}$, $b = \frac{2}{3-\sqrt{7}}$ のとき、$ab$, $a+b$, $a^2 + b^2$ の値を求めよ。

式の計算有理化平方根式の展開因数分解
2025/5/25

与えられた連立不等式を解き、$x$ の範囲を求める問題です。 連立不等式は以下の通りです。 $\begin{cases} -4 \le -5x + 8 \\ -5x + 8 \le 3 \end{ca...

連立不等式不等式一次不等式
2025/5/25

ベクトル $\vec{a} = (1, -3)$ と $\vec{b} = (-2, 1)$ が与えられたとき、以下のベクトルを成分で表し、その大きさを求めます。 (1) $3\vec{a}$ (2)...

ベクトルベクトルの演算ベクトルの大きさ
2025/5/25

50円のお菓子と80円のお菓子を合わせて15個買う。合計金額が1000円以下になるように、80円のお菓子をなるべく多く買うとき、それぞれのお菓子の個数を求める。

一次不等式文章題連立方程式
2025/5/25

与えられた連立不等式を解く問題です。 連立不等式は次の通りです。 $ \begin{cases} 2x + 3 \le \frac{1}{2}x - 2 \\ x - 3 \ge 6x + 7 \en...

連立不等式不等式一次不等式
2025/5/25

次の連立不等式を解きます。 $ \begin{cases} 3x+1 > 2x - 4 \\ x - 1 \le -x + 3 \end{cases} $

連立不等式不等式数直線
2025/5/25

ベクトル $x$ と $y$ に関する連立方程式 $\begin{cases} 3x + y = a \\ x - y = b \end{cases}$ を解き、$x$ と $y$ を $a$ と $...

連立方程式ベクトル線形代数
2025/5/25

4次正方行列 $ \begin{vmatrix} a & b & c & d \\ b & a & d & c \end{vmatrix} $ の行列式を2通りの方法で計算することで、 $ (a^2 ...

行列式行列展開等式の証明
2025/5/25