全体集合 $U = \{x | x は 10 以下の自然数\}$、 $A = \{2, 4, 6, 8, 10\}$、 $B = \{3, 6, 9\}$ のとき、以下の値を求めます。 (1) $n(A \cap B)$ (2) $n(A \cup B)$ (3) $n(\overline{A \cap B})$ (4) $n(A \cap \overline{B})$ また、100以下の自然数のうち、以下の数の個数を求めます。 (1) 3で割り切れる数 (2) 7で割り切れる数
2025/5/25
1. 問題の内容
全体集合 、
、
のとき、以下の値を求めます。
(1)
(2)
(3)
(4)
また、100以下の自然数のうち、以下の数の個数を求めます。
(1) 3で割り切れる数
(2) 7で割り切れる数
2. 解き方の手順
まず、集合 と について考えます。
(1) は、 と の共通部分なので、 。したがって、
(2) は、 と の和集合なので、。したがって、
(3) は、 の補集合です。 なので、。したがって、
(4) は、 の補集合なので、。
は、 と の共通部分なので、。したがって、
次に、100以下の自然数について考えます。
(1) 3で割り切れる数は、100を3で割った商に等しい。 なので、3で割り切れる数は33個。
(2) 7で割り切れる数は、100を7で割った商に等しい。 なので、7で割り切れる数は14個。
3. 最終的な答え
集合の問題:
(1)
(2)
(3)
(4)
100以下の自然数の問題:
(1) 3で割り切れる数: 33
(2) 7で割り切れる数: 14