50人の人にAとBの2問のクイズを出題したところ、Aを正解した人は27人、Bを正解した人は13人、AとBをともに正解した人は4人であった。 (1) AとBの少なくとも一方を正解した人は何人いるか。 (2) AもBも正解しなかった人は何人いるか。 (3) Aだけ正解し、Bは正解しなかった人は何人いるか。

確率論・統計学集合集合算ベン図場合の数
2025/5/25

1. 問題の内容

50人の人にAとBの2問のクイズを出題したところ、Aを正解した人は27人、Bを正解した人は13人、AとBをともに正解した人は4人であった。
(1) AとBの少なくとも一方を正解した人は何人いるか。
(2) AもBも正解しなかった人は何人いるか。
(3) Aだけ正解し、Bは正解しなかった人は何人いるか。

2. 解き方の手順

(1) AとBの少なくとも一方を正解した人の人数は、集合の和の公式を用いて求める。
n(AB)=n(A)+n(B)n(AB)n(A \cup B) = n(A) + n(B) - n(A \cap B)
ここで、n(A)=27n(A) = 27, n(B)=13n(B) = 13, n(AB)=4n(A \cap B) = 4であるから、
n(AB)=27+134=36n(A \cup B) = 27 + 13 - 4 = 36
(2) AもBも正解しなかった人の人数は、全体からAとBの少なくとも一方を正解した人の人数を引くことで求める。
全体をUとすると、n(U)=50n(U) = 50であり、AもBも正解しなかった人の集合は(AB)c(A \cup B)^cであるから、
n((AB)c)=n(U)n(AB)=5036=14n((A \cup B)^c) = n(U) - n(A \cup B) = 50 - 36 = 14
(3) Aだけ正解し、Bは正解しなかった人の人数は、Aを正解した人の人数からAとB両方を正解した人の人数を引くことで求める。
Aだけ正解しBは正解しなかった人の集合はABcA \cap B^cであるから、
n(ABc)=n(A)n(AB)=274=23n(A \cap B^c) = n(A) - n(A \cap B) = 27 - 4 = 23

3. 最終的な答え

(1) 36人
(2) 14人
(3) 23人

「確率論・統計学」の関連問題

円グラフは、大型貨物自動車に対する道路交通法違反取締り状況を表しています。グラフから読み取れる情報に基づいて、以下の選択肢の中から明らかに正しいものを1つ選びます。 * 信号無視件数は、一時停...

円グラフ割合データ分析統計
2025/5/27

Y社社員の月平均読書量に関するグラフが与えられています。このグラフは、管理職とそのほかの社員について、月あたりの読書冊数ごとの割合を示しています。問題は、10冊以上本を読む管理職の割合が、それ以外の管...

グラフ割合統計比率
2025/5/27

すべての観測値に同じ値 $\alpha$ を加えても、分散は変化しないことを証明してください。

分散統計確率平均
2025/5/27

問題は3つあります。 * 問題1:52枚のトランプ(ジョーカーなし)で、手札にスペードが4枚ある状態で、5枚目にスペードが来る確率を計算します。対戦相手は9人であり、対戦相手のカードは不明です。 ...

確率トランプポーカー条件付き確率
2025/5/27

10から49までの数字が書かれた40枚のカードが入った袋から1枚を取り出す。以下の確率を求める。 (1) 数字が2の倍数または5の倍数である確率 (2) 数字が5の倍数でない確率

確率倍数排反事象
2025/5/27

父、母、息子2人、娘1人が円形のテーブルに向かって座る時、女性が隣り合わない座り方は何通りあるか。

順列円順列組み合わせ場合の数
2025/5/26

(1) $1 \le x_1 < x_2 < x_3 \le 6$ を満たす整数の組 $(x_1, x_2, x_3)$ の個数を求める問題。 (2) 大中小3個のサイコロを投げるとき、目の和が7にな...

組み合わせ順列重複組み合わせ場合の数サイコロ
2025/5/26

サイコロを繰り返し投げ、出た目の数を足していく。合計が4以上になったら投げるのをやめる。 (1) 1の目、2の目、3の目、4の目が最初に出たときに、それぞれ何通りの目の出方で終了するかを答える。 (2...

確率サイコロ確率分布期待値
2025/5/26

さいころを2回投げ、1回目の出た目を $a$、2回目の出た目を $b$ とする。座標平面上に2点 $A(1, 0)$, $B(4, 0)$ をとる。点 $P$ の座標を $(a, b)$ とするとき、...

確率幾何サイコロ面積
2025/5/26

グラフは4〜5年前と比較した食品別小売価格の変化を示しており、「かなり安くなった」、「少し安くなった」、「変わらない」、「少し高くなった」、「かなり高くなった」、「わからない・無回答」の割合が食品ごと...

グラフ統計分析割合比較
2025/5/26