数列 $\{a_n\}$, $\{b_n\}$ が $\sum_{k=1}^n a_k = n^2$ と $\sum_{k=1}^n b_k = 2^n$ を満たすとき、$\sum_{k=1}^n (a_k)^2$ を求める問題です。解析学数列級数和の計算シグマ2025/3/251. 問題の内容数列 {an}\{a_n\}{an}, {bn}\{b_n\}{bn} が ∑k=1nak=n2\sum_{k=1}^n a_k = n^2∑k=1nak=n2 と ∑k=1nbk=2n\sum_{k=1}^n b_k = 2^n∑k=1nbk=2n を満たすとき、∑k=1n(ak)2\sum_{k=1}^n (a_k)^2∑k=1n(ak)2 を求める問題です。2. 解き方の手順まず、aka_kak を求めます。∑k=1nak=n2\sum_{k=1}^n a_k = n^2∑k=1nak=n2 であるので、n≥2n \geq 2n≥2 のとき、an=∑k=1nak−∑k=1n−1ak=n2−(n−1)2=n2−(n2−2n+1)=2n−1a_n = \sum_{k=1}^n a_k - \sum_{k=1}^{n-1} a_k = n^2 - (n-1)^2 = n^2 - (n^2 - 2n + 1) = 2n - 1an=∑k=1nak−∑k=1n−1ak=n2−(n−1)2=n2−(n2−2n+1)=2n−1n=1n = 1n=1 のとき、a1=∑k=11ak=12=1a_1 = \sum_{k=1}^1 a_k = 1^2 = 1a1=∑k=11ak=12=1.an=2n−1a_n = 2n-1an=2n−1 は n=1n=1n=1 のときも成立するので、an=2n−1a_n = 2n-1an=2n−1 となります。次に、∑k=1n(ak)2\sum_{k=1}^n (a_k)^2∑k=1n(ak)2 を計算します。∑k=1n(ak)2=∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n1\sum_{k=1}^n (a_k)^2 = \sum_{k=1}^n (2k-1)^2 = \sum_{k=1}^n (4k^2 - 4k + 1) = 4 \sum_{k=1}^n k^2 - 4 \sum_{k=1}^n k + \sum_{k=1}^n 1∑k=1n(ak)2=∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^n 1 = n∑k=1n1=nしたがって、∑k=1n(ak)2=4⋅n(n+1)(2n+1)6−4⋅n(n+1)2+n=2n(n+1)(2n+1)3−2n(n+1)+n=2n(n+1)(2n+1)−6n(n+1)+3n3=n[2(n+1)(2n+1)−6(n+1)+3]3=n[2(2n2+3n+1)−6n−6+3]3=n[4n2+6n+2−6n−3]3=n(4n2−1)3=n(2n−1)(2n+1)3\sum_{k=1}^n (a_k)^2 = 4 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + n = \frac{2n(n+1)(2n+1)}{3} - 2n(n+1) + n = \frac{2n(n+1)(2n+1) - 6n(n+1) + 3n}{3} = \frac{n[2(n+1)(2n+1) - 6(n+1) + 3]}{3} = \frac{n[2(2n^2 + 3n + 1) - 6n - 6 + 3]}{3} = \frac{n[4n^2 + 6n + 2 - 6n - 3]}{3} = \frac{n(4n^2 - 1)}{3} = \frac{n(2n-1)(2n+1)}{3}∑k=1n(ak)2=4⋅6n(n+1)(2n+1)−4⋅2n(n+1)+n=32n(n+1)(2n+1)−2n(n+1)+n=32n(n+1)(2n+1)−6n(n+1)+3n=3n[2(n+1)(2n+1)−6(n+1)+3]=3n[2(2n2+3n+1)−6n−6+3]=3n[4n2+6n+2−6n−3]=3n(4n2−1)=3n(2n−1)(2n+1)3. 最終的な答え∑k=1n(ak)2=n(4n2−1)3=n(2n−1)(2n+1)3\sum_{k=1}^n (a_k)^2 = \frac{n(4n^2-1)}{3} = \frac{n(2n-1)(2n+1)}{3}∑k=1n(ak)2=3n(4n2−1)=3n(2n−1)(2n+1)