4桁の整数 $abc6$ が与えられており、$a, b, c$ は1桁の整数です。この整数が3, 7, 11のいずれでも割り切れるとき、$a+b+c$ が最大となるのはどの選択肢か。
2025/5/26
1. 問題の内容
4桁の整数 が与えられており、 は1桁の整数です。この整数が3, 7, 11のいずれでも割り切れるとき、 が最大となるのはどの選択肢か。
2. 解き方の手順
まず、3, 7, 11の最小公倍数を考えます。 です。したがって、 は231の倍数である必要があります。
次に、 の形から、 であることがわかります。
が231の倍数であることから、 と表せます。ここで は整数です。
より、 となり、約 であるため、 です。
を大きくしていくと、 の値も大きくなる可能性があります。
となり、この場合末尾が3なので条件を満たしません。
以下、43から順に小さくしていき、 の末尾が6となるものを探します。
が6で終わるためには、 の末尾が6である必要があります。
のとき、。このとき、。
のとき、。このとき、。
のとき、。このとき、。
のとき、。このとき、。
これらの結果から、 の最大値は 18 であることがわかります。
3. 最終的な答え
5 18