(1) 部分分数分解を利用します。
k(k+1)(k+2)1=kA+k+1B+k+2Cとおき、A, B, Cを求めます。 1=A(k+1)(k+2)+Bk(k+2)+Ck(k+1) k=0のとき: 1=2A より A=21 k=-1のとき: 1=−B より B=−1 k=-2のとき: 1=2C より C=21 よって、
k(k+1)(k+2)1=2k1−k+11+2(k+2)1=21(k1−k+12+k+21)=21(k1−k+11−k+11+k+21) ∑k=1nk(k+1)(k+2)1=21∑k=1n(k1−k+11−k+11+k+21) =21[(11−21)+(21−31)+...+(n1−n+11)−(21−31)−...−(n+11−n+21)−(11−21)+(n1−n+11)+(n+11−n+21)−(21−31)−(31−41)−...−(n+11−n+21)] =21[(11−n+11)−(21−n+21)]=21[11−21−n+11+n+21]=21[21−(n+1)(n+2)1]=21[2(n+1)(n+2)(n+1)(n+2)−2]=41[(n+1)(n+2)n2+3n]=4(n+1)(n+2)n(n+3) (2) 分母の有理化を行います。
k+k+11=(k+k+1)(k−k+1)k−k+1=k−(k+1)k−k+1=−1k−k+1=k+1−k ∑k=1nk+k+11=∑k=1n(k+1−k)=(2−1)+(3−2)+...+(n+1−n)=n+1−1 (3) 部分分数分解を行います。
k(k+1)(k+2)(k+3)3+2k=kA+k+1B+k+2C+k+3D 3+2k=A(k+1)(k+2)(k+3)+Bk(k+2)(k+3)+Ck(k+1)(k+3)+Dk(k+1)(k+2) k=0のとき: 3=6A より A=21 k=-1のとき: 1=−2B より B=−21 k=-2のとき: −1=2C より C=−21 k=-3のとき: −3=−6D より D=21 k(k+1)(k+2)(k+3)3+2k=2k1−2(k+1)1−2(k+2)1+2(k+3)1=21(k1−k+11−k+21+k+31) ∑k=1nk(k+1)(k+2)(k+3)3+2k=21∑k=1n(k1−k+11−k+21+k+31) $\frac{1}{2} [(\frac{1}{1} - \frac{1}{2} - \frac{1}{3} + \frac{1}{4}) + (\frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5})+ ... + (\frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3})] = \frac{1}{2} [(\frac{1}{1}-\frac{1}{2} - (\frac{1}{2}-\frac{1}{3}) - (\frac{1}{3}-\frac{1}{4})+...] = \frac{1}{2}[\frac{1}{1} - \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{4} +\frac{1}{5}-...\frac{1}{n}+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}]=\frac{1}{2} [\frac{1}{1} - (\frac{1}{n+1}+\frac{1}{n+2} - \frac{1}{n+2} - \frac{1}{n+1}) -\frac{1}{2}-\frac{1}{3} + \frac{1}{n+1}+\frac{1}{n+2}-\frac{1}{2}-\frac{1}{3}]
$=\frac{1}{2} (\frac{1}{1} - \frac{1}{2} - \frac{1}{3} - \frac{1}{n+1} + \frac{1}{n+3})= \frac{1}{2} (\frac{1}{6} - \frac{1}{n+1} + \frac{1}{n+2} - \frac{1}{n+2} ) + \frac{1}{n+3}] = \frac{1}{2} (5/6 - \frac{1}{n+1} - \frac{1}{n+2}+\frac{1}{n+2}+\frac{1}{n+3} ]=\frac{1}{12} = \frac{5}{12} - (\frac{1}{n+1}+\frac{1}{n+1} ]- \frac{12} ( \frac{2}{6} - \frac{3n^2+5n]}{ = \frac{5}{6}- \frac{(n+2)(n+3)-(n+1)(n+3) + n^2+2 - n^3+2(3)-