直角三角形$\triangle ABC$と$\triangle DEF$において、$\angle C = \angle F = 90^\circ$, $AB = DE$, $\angle A = \angle D$のとき、$\triangle ABC \equiv \triangle DEF$であることを証明する。

幾何学合同三角形証明直角三角形
2025/5/26

1. 問題の内容

直角三角形ABC\triangle ABCDEF\triangle DEFにおいて、C=F=90\angle C = \angle F = 90^\circ, AB=DEAB = DE, A=D\angle A = \angle Dのとき、ABCDEF\triangle ABC \equiv \triangle DEFであることを証明する。

2. 解き方の手順

三角形の合同条件である「斜辺と一つの鋭角がそれぞれ等しい」を利用して証明する。
ABC\triangle ABCDEF\triangle DEFにおいて、
仮定より、
C=F=90\angle C = \angle F = 90^\circ (1)
AB=DEAB = DE (2)
A=D\angle A = \angle D (3)
(1),(2),(3)より、直角三角形の斜辺と一つの鋭角がそれぞれ等しいから、
ABCDEF\triangle ABC \equiv \triangle DEF

3. 最終的な答え

ABCDEF\triangle ABC \equiv \triangle DEF

「幾何学」の関連問題

$\triangle ABC$ があり、$AB=BC=7$, $CA=6$ である。$BC$ の延長上に $BC=CD$ となる点 $D$ をとる。線分 $AD$ の中点を $E$, $AC$ と $...

幾何三角形メネラウスの定理チェバの定理余弦定理二等辺三角形
2025/6/1

三角形ABCにおいて、$AB=BC=7$, $CA=6$である。辺BCの延長上に、$BC=CD$となる点Dをとる。線分ADの中点をEとし、線分ACとBEの交点をFとする。このとき、線分BFの長さを求め...

三角形メネラウスの定理余弦定理中点線分の長さ
2025/6/1

$AB = BC = 7$, $CA = 6$ である $\triangle ABC$ がある。$BC$ の延長上に $BC = CD$ となる点 $D$ をとる。線分 $AD$ の中点を $E$, ...

三角形メネラウスの定理チェバの定理中線定理面積比内分点
2025/6/1

三角形ABCにおいて、角Aの二等分線と辺BCの交点をD、辺BCの中点をMとする。3点A, D, Mを通る円が辺AB, ACとそれぞれ点E, Fで交わる。BD=4, DC=2であるとき、以下の値を求めよ...

幾何三角形角の二等分線方べきの定理
2025/6/1

平行四辺形ABCDにおいて、$AB = \sqrt{3}$, $AD = 5$, $\angle{BAD} = 30^\circ$のとき、対角線ACの長さを求めよ。

平行四辺形余弦定理角度対角線
2025/6/1

与えられた2つのベクトル $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求める問題です。2つの問題があります。 (1) $\vec{a} = (1, -\sqrt{3})$...

ベクトル内積角度三角関数
2025/6/1

問題は、次の不等式の表す領域を図示することです。 (1) $\begin{cases} x^2 + y^2 > 1 \\ y < x+1 \end{cases}$ (2) $\begin{cases}...

不等式領域楕円双曲線放物線
2025/6/1

体積が等しい正四角錐と正四角柱がある。正四角柱の底面の正方形の1辺の長さは、正四角錐の底面の正方形の1辺の長さの半分である。このとき、正四角柱の高さは正四角錐の高さの何倍かを求める。

体積正四角錐正四角柱相似
2025/6/1

(1) $\theta$ が鋭角で、$\cos \theta = \frac{5}{7}$ のとき、$\sin \theta$ と $\tan \theta$ の値を求めます。 (2) $\tan \...

三角比三角関数sincostan相互関係
2025/6/1

直角三角形ABCにおいて、斜辺がBC、∠B = 30°, AC = 1である。辺AB上にAD = 1となる点Dを取り、点Dを通るBCに垂直な直線とBCの交点をHとする。∠BCD, BD, DH, si...

直角三角形三角比角度辺の長さ三角関数の値
2025/6/1