直線 $y = \frac{1}{3}x + 7$ に垂直で、点 $(-1, 8)$ を通る直線の式を求める。

幾何学直線垂直傾き方程式
2025/5/26

1. 問題の内容

直線 y=13x+7y = \frac{1}{3}x + 7 に垂直で、点 (1,8)(-1, 8) を通る直線の式を求める。

2. 解き方の手順

まず、与えられた直線 y=13x+7y = \frac{1}{3}x + 7 の傾きを求めます。この直線の傾きは 13\frac{1}{3} です。
次に、求める直線は与えられた直線に垂直なので、その傾きは与えられた直線の傾きの逆数の負符号をつけたものになります。つまり、求める直線の傾きは 3-3 です。
求める直線の式を y=3x+by = -3x + b とおきます。
この直線は点 (1,8)(-1, 8) を通るので、x=1x = -1, y=8y = 8 を代入して、bb を求めます。
8=3(1)+b8 = -3(-1) + b
8=3+b8 = 3 + b
b=5b = 5
したがって、求める直線の式は y=3x+5y = -3x + 5 となります。

3. 最終的な答え

y=3x+5y = -3x + 5

「幾何学」の関連問題

$\triangle ABC$ があり、$AB=BC=7$, $CA=6$ である。$BC$ の延長上に $BC=CD$ となる点 $D$ をとる。線分 $AD$ の中点を $E$, $AC$ と $...

幾何三角形メネラウスの定理チェバの定理余弦定理二等辺三角形
2025/6/1

三角形ABCにおいて、$AB=BC=7$, $CA=6$である。辺BCの延長上に、$BC=CD$となる点Dをとる。線分ADの中点をEとし、線分ACとBEの交点をFとする。このとき、線分BFの長さを求め...

三角形メネラウスの定理余弦定理中点線分の長さ
2025/6/1

$AB = BC = 7$, $CA = 6$ である $\triangle ABC$ がある。$BC$ の延長上に $BC = CD$ となる点 $D$ をとる。線分 $AD$ の中点を $E$, ...

三角形メネラウスの定理チェバの定理中線定理面積比内分点
2025/6/1

三角形ABCにおいて、角Aの二等分線と辺BCの交点をD、辺BCの中点をMとする。3点A, D, Mを通る円が辺AB, ACとそれぞれ点E, Fで交わる。BD=4, DC=2であるとき、以下の値を求めよ...

幾何三角形角の二等分線方べきの定理
2025/6/1

平行四辺形ABCDにおいて、$AB = \sqrt{3}$, $AD = 5$, $\angle{BAD} = 30^\circ$のとき、対角線ACの長さを求めよ。

平行四辺形余弦定理角度対角線
2025/6/1

与えられた2つのベクトル $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求める問題です。2つの問題があります。 (1) $\vec{a} = (1, -\sqrt{3})$...

ベクトル内積角度三角関数
2025/6/1

問題は、次の不等式の表す領域を図示することです。 (1) $\begin{cases} x^2 + y^2 > 1 \\ y < x+1 \end{cases}$ (2) $\begin{cases}...

不等式領域楕円双曲線放物線
2025/6/1

体積が等しい正四角錐と正四角柱がある。正四角柱の底面の正方形の1辺の長さは、正四角錐の底面の正方形の1辺の長さの半分である。このとき、正四角柱の高さは正四角錐の高さの何倍かを求める。

体積正四角錐正四角柱相似
2025/6/1

(1) $\theta$ が鋭角で、$\cos \theta = \frac{5}{7}$ のとき、$\sin \theta$ と $\tan \theta$ の値を求めます。 (2) $\tan \...

三角比三角関数sincostan相互関係
2025/6/1

直角三角形ABCにおいて、斜辺がBC、∠B = 30°, AC = 1である。辺AB上にAD = 1となる点Dを取り、点Dを通るBCに垂直な直線とBCの交点をHとする。∠BCD, BD, DH, si...

直角三角形三角比角度辺の長さ三角関数の値
2025/6/1