複素数 $1-i$ の絶対値を求めます。

代数学複素数絶対値
2025/5/26

1. 問題の内容

複素数 1i1-i の絶対値を求めます。

2. 解き方の手順

複素数 z=a+biz = a + bi の絶対値 z|z| は、 z=a2+b2|z| = \sqrt{a^2 + b^2} で計算できます。
この問題では、z=1iz = 1 - i なので、a=1a = 1, b=1b = -1 です。
したがって、
1i=12+(1)2=1+1=2|1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}

3. 最終的な答え

2\sqrt{2}

「代数学」の関連問題

与えられた2組の行列について、それぞれの組が行列の積に関して可換であるかどうかを調べる問題です。 (1) の行列は $ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & a \...

行列行列の積可換線形代数
2025/5/27

3つの変数A, B, Cに関する以下の連立方程式を解く問題です。 $A \div B \div C = 5$ $A \div B - C = 12$ $A - B = 84$

連立方程式代数計算
2025/5/27

与えられた式 $\frac{x}{x+1} + \frac{3x-1}{x^2 - 2x}$ を簡略化して、最も簡単な形にすることを目標とします。

式の簡略化分数式代数
2025/5/27

画像にある数学の問題を解きます。具体的には、 1. $(-2) \times (-6)$ の計算

四則演算式の展開連立方程式反比例角度
2025/5/27

次の2次関数のグラフの軸と頂点を求める問題です。 (1) $y = x^2 + 3$ (2) $y = -x^2 + 2$ (3) $y = 2(x+1)^2$

二次関数グラフ頂点平行移動
2025/5/27

与えられた式 $ \frac{2}{x+1} + \frac{3}{x^2+x} $ を簡略化します。

分数式の計算式の簡略化因数分解通分
2025/5/27

与えられた式 $\frac{1}{x-1} - \frac{1}{x(x-1)}$ を簡約化する問題です。

分数式簡約化代数
2025/5/27

画像には、次の2種類の問題があります。 * 式の展開: 与えられた式を展開すること。 * 因数分解: 与えられた式を因数分解すること。

式の展開因数分解二次式
2025/5/27

6つの連立方程式を解く問題です。

連立方程式一次方程式方程式の解法
2025/5/27

与えられた一次方程式を解く問題です。4(1),(2), 5(1),(2),(3),(4)の合計6つの方程式を解きます。

一次方程式方程式計算
2025/5/27