与えられた式の分母を有理化する問題です。式は $\frac{1}{\sqrt{5}+\sqrt{3}}$ です。

代数学分母の有理化平方根式の計算
2025/5/26

1. 問題の内容

与えられた式の分母を有理化する問題です。式は 15+3\frac{1}{\sqrt{5}+\sqrt{3}} です。

2. 解き方の手順

分母を有理化するには、分母の共役な複素数(ここでは53\sqrt{5}-\sqrt{3})を分子と分母の両方に掛けます。
与えられた式は、
15+3\frac{1}{\sqrt{5}+\sqrt{3}}
分子と分母に53\sqrt{5}-\sqrt{3}を掛けます。
15+3×5353=53(5+3)(53)\frac{1}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}
分母を展開します。
(5+3)(53)=(5)2(3)2=53=2(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3}) = (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2
したがって、
532\frac{\sqrt{5}-\sqrt{3}}{2}

3. 最終的な答え

532\frac{\sqrt{5}-\sqrt{3}}{2}

「代数学」の関連問題

(15) 放物線 $y = x^2 + ax + b$ が2点 $(1, 3)$ と $(3, 7)$ を通るとき、定数 $a, b$ の値を求めます。 (16) 2次関数 $y = 2x^2 - 4...

二次関数放物線平方完成最小値連立方程式
2025/5/28

与えられた行列の計算問題を解きます。具体的には、行列のスカラー倍、行列の和、行列の積を計算します。問題は全部で4つあります。

行列行列演算スカラー倍行列の和行列の積
2025/5/28

与えられた2つの2次関数とx軸との共有点の座標を求める問題です。 (13) $y = x^2 - 5x + 6$ (14) $y = x^2 + 4x + 4$

二次関数二次方程式共有点因数分解
2025/5/28

与えられた2次関数の頂点の座標または最大値/最小値を求める問題です。具体的には、以下の関数について解答します。 (5) $y = -2(x + 1)^2 - 4$ (6) $y = x^2 - 6x ...

二次関数平方完成頂点最大値最小値
2025/5/28

与えられた2x2行列AとBに対して、積ABとBAを計算する問題です。

行列行列の積
2025/5/28

与えられた4つの2次関数について、最大値または最小値を求め、そのときの $x$ の値を求めます。 (9) $y = x^2 - 4x + 7$ (10) $y = -x^2 - 6x - 2$ (11...

二次関数平方完成最大値最小値頂点
2025/5/28

行列 $A = \begin{pmatrix} 1 & -4 \\ 10 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -2 \\ 2 & 7 \end...

行列連立方程式線形代数
2025/5/28

与えられた4つの二次関数の頂点の座標を求める。

二次関数平方完成頂点座標
2025/5/28

与えられた条件を満たす2次関数を求める問題です。具体的には、 (1) 頂点の座標と通る1点が与えられたとき (2) 頂点の座標と通る1点が与えられたとき (3) 通る3点が与えられたとき (4) 通る...

二次関数グラフ方程式
2025/5/28

この問題は、複数の2次関数に関する様々な問題を扱っています。具体的には、以下の内容が含まれます。 * 条件を満たす2次関数を求める問題(頂点と通る点、または通る3点が与えられた場合) * 2次...

二次関数連立方程式平方完成最大値最小値
2025/5/28