$a < 3$のとき、$\sqrt{a^2 - 6a + 9}$を簡単にせよ。

代数学平方根絶対値因数分解不等式
2025/5/27

1. 問題の内容

a<3a < 3のとき、a26a+9\sqrt{a^2 - 6a + 9}を簡単にせよ。

2. 解き方の手順

まず、根号の中身を因数分解します。
a26a+9=(a3)2a^2 - 6a + 9 = (a - 3)^2
したがって、a26a+9=(a3)2=a3\sqrt{a^2 - 6a + 9} = \sqrt{(a-3)^2} = |a-3|となります。
ここで、a<3a < 3であることから、a3<0a - 3 < 0となります。
絶対値記号を外す際には、中身の符号が負であるため、マイナスを掛けて正にする必要があります。
a3=(a3)=a+3=3a|a - 3| = -(a - 3) = -a + 3 = 3 - a

3. 最終的な答え

3a3-a

「代数学」の関連問題

実数 $a$ に対して、2つの集合 $A = \{a-1, 4, a^2 - 5a + 6\}$ と $B = \{1, a^2 - 4, a^2 - 7a + 12, 4\}$ が与えられています。...

集合方程式因数分解共通部分
2025/5/28

集合 $A$ と $B$ が与えられています。 $A = \{3n - 1 \mid 1 \le n \le 5, n は整数\}$ $B = \{6n + 2 \mid 0 \le n \le 2,...

集合部分集合要素
2025/5/28

与えられた連立1次方程式を解き、解をベクトルを用いて表現する問題です。連立方程式は2つあります。 (1) $2x + y - 2z = 3$ $x + y - 3z + w = 2$ $3x + y ...

連立方程式線形代数行列ベクトル解の表現
2025/5/28

3点A(0, 5), B(-1, a+3), C(3, 1-a) が同じ直線上にあるとき、定数aの値を求める。

直線座標傾き一次方程式
2025/5/28

$2x^2 + 3y^2 = 1$ を満たす実数 $x, y$ が与えられたとき、$x^2 - y^2 + xy$ の最大値を求める。

楕円最大値三角関数媒介変数表示
2025/5/28

$x = 5, y = -3$ のとき、以下の各式について、式の値を求めよ。 (1) $2(7x + 4y) - 3(2x - y)$ (2) $\frac{1}{3}(3x - y) - \frac...

式の計算文字式の計算式の値代入
2025/5/28

$a = 4$, $b = -2$ のとき、以下の式の値をそれぞれ求めます。 (1) $2a - 3b$ (3) $-7a - (2a - 3b)$ (5) $a^2 \times 3ab$

式の計算代入文字式
2025/5/28

$a = 4$ , $b = -2$ のとき、次の式の値をそれぞれ求めます。 (1) $2a - 3b$ (3) $-7a - (2a - 3b)$ (5) $a^2 \times 3ab$

式の計算代入四則演算
2025/5/28

$x^2 - 2ax + 3a - 2 = 0$ という二次方程式 (*) について、以下の条件を満たす $a$ の値の範囲を求めます。 (ア) (*) が異なる2つの実数解をもつ (イ) (*) が...

二次方程式解の条件判別式解と係数の関係
2025/5/28

$(a - 2b + c)^5$ の展開式における $a^2bc^2$ の項の係数を求める問題です。

多項定理展開係数
2025/5/28