与えられた2x2行列AとBに対して、積ABとBAを計算する問題です。代数学行列行列の積2025/5/281. 問題の内容与えられた2x2行列AとBに対して、積ABとBAを計算する問題です。2. 解き方の手順(1) A=(1221)A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}A=(1221), B=(0120)B = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}B=(0210)AB=(1221)(0120)=(1∗0+2∗21∗1+2∗02∗0+1∗22∗1+1∗0)=(4122)AB = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1*0 + 2*2 & 1*1 + 2*0 \\ 2*0 + 1*2 & 2*1 + 1*0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 2 \end{pmatrix}AB=(1221)(0210)=(1∗0+2∗22∗0+1∗21∗1+2∗02∗1+1∗0)=(4212)BA=(0120)(1221)=(0∗1+1∗20∗2+1∗12∗1+0∗22∗2+0∗1)=(2124)BA = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0*1 + 1*2 & 0*2 + 1*1 \\ 2*1 + 0*2 & 2*2 + 0*1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix}BA=(0210)(1221)=(0∗1+1∗22∗1+0∗20∗2+1∗12∗2+0∗1)=(2214)(2) A=(0−110)A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}A=(01−10), B=(100−1)B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}B=(100−1)AB=(0−110)(100−1)=(0∗1+(−1)∗00∗0+(−1)∗(−1)1∗1+0∗01∗0+0∗(−1))=(0110)AB = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0*1 + (-1)*0 & 0*0 + (-1)*(-1) \\ 1*1 + 0*0 & 1*0 + 0*(-1) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}AB=(01−10)(100−1)=(0∗1+(−1)∗01∗1+0∗00∗0+(−1)∗(−1)1∗0+0∗(−1))=(0110)BA=(100−1)(0−110)=(1∗0+0∗11∗(−1)+0∗00∗0+(−1)∗10∗(−1)+(−1)∗0)=(0−1−10)BA = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1*0 + 0*1 & 1*(-1) + 0*0 \\ 0*0 + (-1)*1 & 0*(-1) + (-1)*0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}BA=(100−1)(01−10)=(1∗0+0∗10∗0+(−1)∗11∗(−1)+0∗00∗(−1)+(−1)∗0)=(0−1−10)(3) A=(2001)A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}A=(2001), B=(0010)B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}B=(0100)AB=(2001)(0010)=(2∗0+0∗12∗0+0∗00∗0+1∗10∗0+1∗0)=(0010)AB = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2*0 + 0*1 & 2*0 + 0*0 \\ 0*0 + 1*1 & 0*0 + 1*0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}AB=(2001)(0100)=(2∗0+0∗10∗0+1∗12∗0+0∗00∗0+1∗0)=(0100)BA=(0010)(2001)=(0∗2+0∗00∗0+0∗11∗2+0∗01∗0+0∗1)=(0020)BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0*2 + 0*0 & 0*0 + 0*1 \\ 1*2 + 0*0 & 1*0 + 0*1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}BA=(0100)(2001)=(0∗2+0∗01∗2+0∗00∗0+0∗11∗0+0∗1)=(0200)(4) A=(abba)A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}A=(abba), B=(cddc)B = \begin{pmatrix} c & d \\ d & c \end{pmatrix}B=(cddc)AB=(abba)(cddc)=(a∗c+b∗da∗d+b∗cb∗c+a∗db∗d+a∗c)=(ac+bdad+bcad+bcac+bd)AB = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} a*c + b*d & a*d + b*c \\ b*c + a*d & b*d + a*c \end{pmatrix} = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}AB=(abba)(cddc)=(a∗c+b∗db∗c+a∗da∗d+b∗cb∗d+a∗c)=(ac+bdad+bcad+bcac+bd)BA=(cddc)(abba)=(c∗a+d∗bc∗b+d∗ad∗a+c∗bd∗b+c∗a)=(ac+bdad+bcad+bcac+bd)BA = \begin{pmatrix} c & d \\ d & c \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} = \begin{pmatrix} c*a + d*b & c*b + d*a \\ d*a + c*b & d*b + c*a \end{pmatrix} = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}BA=(cddc)(abba)=(c∗a+d∗bd∗a+c∗bc∗b+d∗ad∗b+c∗a)=(ac+bdad+bcad+bcac+bd)3. 最終的な答え(1) AB=(4122)AB = \begin{pmatrix} 4 & 1 \\ 2 & 2 \end{pmatrix}AB=(4212), BA=(2124)BA = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix}BA=(2214)(2) AB=(0110)AB = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}AB=(0110), BA=(0−1−10)BA = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}BA=(0−1−10)(3) AB=(0010)AB = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}AB=(0100), BA=(0020)BA = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}BA=(0200)(4) AB=(ac+bdad+bcad+bcac+bd)AB = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}AB=(ac+bdad+bcad+bcac+bd), BA=(ac+bdad+bcad+bcac+bd)BA = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}BA=(ac+bdad+bcad+bcac+bd)