ベクトル場 $\mathbf{A} = \cos(xy) \mathbf{e}_x + (3xy - 2x^2) \mathbf{e}_y - (3x + 2y) \mathbf{e}_z$ が与えられたとき、以下の偏微分を求める。 1. $\frac{\partial \mathbf{A}}{\partial x}$ 2. $\frac{\partial \mathbf{A}}{\partial y}$ 3. $\frac{\partial^2 \mathbf{A}}{\partial x^2}$ 4. $\frac{\partial^2 \mathbf{A}}{\partial y^2}$ 5. $\frac{\partial^2 \mathbf{A}}{\partial x \partial y}$ 6. $\frac{\partial^2 \mathbf{A}}{\partial y \partial x}$
2025/5/28
## 問題の解答
以下に、問題 [3] と [4] の解答を示します。
### 問題 [3]
1. 問題の内容
ベクトル場 が与えられたとき、以下の偏微分を求める。
1. $\frac{\partial \mathbf{A}}{\partial x}$
2. $\frac{\partial \mathbf{A}}{\partial y}$
3. $\frac{\partial^2 \mathbf{A}}{\partial x^2}$
4. $\frac{\partial^2 \mathbf{A}}{\partial y^2}$
5. $\frac{\partial^2 \mathbf{A}}{\partial x \partial y}$
6. $\frac{\partial^2 \mathbf{A}}{\partial y \partial x}$
2. 解き方の手順
各偏微分を、それぞれの成分ごとに行う。
1. $\frac{\partial \mathbf{A}}{\partial x} = \frac{\partial}{\partial x} (\cos(xy) \mathbf{e}_x + (3xy - 2x^2) \mathbf{e}_y - (3x + 2y) \mathbf{e}_z) = -y \sin(xy) \mathbf{e}_x + (3y - 4x) \mathbf{e}_y - 3 \mathbf{e}_z$
2. $\frac{\partial \mathbf{A}}{\partial y} = \frac{\partial}{\partial y} (\cos(xy) \mathbf{e}_x + (3xy - 2x^2) \mathbf{e}_y - (3x + 2y) \mathbf{e}_z) = -x \sin(xy) \mathbf{e}_x + 3x \mathbf{e}_y - 2 \mathbf{e}_z$
3. $\frac{\partial^2 \mathbf{A}}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial \mathbf{A}}{\partial x}) = \frac{\partial}{\partial x} (-y \sin(xy) \mathbf{e}_x + (3y - 4x) \mathbf{e}_y - 3 \mathbf{e}_z) = -y^2 \cos(xy) \mathbf{e}_x - 4 \mathbf{e}_y$
4. $\frac{\partial^2 \mathbf{A}}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial \mathbf{A}}{\partial y}) = \frac{\partial}{\partial y} (-x \sin(xy) \mathbf{e}_x + 3x \mathbf{e}_y - 2 \mathbf{e}_z) = -x^2 \cos(xy) \mathbf{e}_x$
5. $\frac{\partial^2 \mathbf{A}}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial \mathbf{A}}{\partial y}) = \frac{\partial}{\partial x} (-x \sin(xy) \mathbf{e}_x + 3x \mathbf{e}_y - 2 \mathbf{e}_z) = (-\sin(xy) - xy \cos(xy)) \mathbf{e}_x + 3 \mathbf{e}_y$
6. $\frac{\partial^2 \mathbf{A}}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{\partial \mathbf{A}}{\partial x}) = \frac{\partial}{\partial y} (-y \sin(xy) \mathbf{e}_x + (3y - 4x) \mathbf{e}_y - 3 \mathbf{e}_z) = (-\sin(xy) - xy \cos(xy)) \mathbf{e}_x + 3 \mathbf{e}_y$
3. 最終的な答え
1. $\frac{\partial \mathbf{A}}{\partial x} = -y \sin(xy) \mathbf{e}_x + (3y - 4x) \mathbf{e}_y - 3 \mathbf{e}_z$
2. $\frac{\partial \mathbf{A}}{\partial y} = -x \sin(xy) \mathbf{e}_x + 3x \mathbf{e}_y - 2 \mathbf{e}_z$
3. $\frac{\partial^2 \mathbf{A}}{\partial x^2} = -y^2 \cos(xy) \mathbf{e}_x - 4 \mathbf{e}_y$
4. $\frac{\partial^2 \mathbf{A}}{\partial y^2} = -x^2 \cos(xy) \mathbf{e}_x$
5. $\frac{\partial^2 \mathbf{A}}{\partial x \partial y} = (-\sin(xy) - xy \cos(xy)) \mathbf{e}_x + 3 \mathbf{e}_y$
6. $\frac{\partial^2 \mathbf{A}}{\partial y \partial x} = (-\sin(xy) - xy \cos(xy)) \mathbf{e}_x + 3 \mathbf{e}_y$
### 問題 [4]
1. 問題の内容
次の関数の全微分を求める。
1. $z = f(x, y) = xy \sin(x + y)$
2. $z = f(r, \theta) = r (\cos \theta \mathbf{e}_x + \sin \theta \mathbf{e}_y)$
2. 解き方の手順
全微分の公式を用いる。
(1)の場合
(2)の場合