$\sqrt{12 - 6\sqrt{3}}$ を計算せよ。

代数学根号平方根式の計算平方完成
2025/5/28

1. 問題の内容

1263\sqrt{12 - 6\sqrt{3}} を計算せよ。

2. 解き方の手順

まず、根号の中の式を平方完成させることを試みます。
126312 - 6\sqrt{3}(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2 の形に変形することを考えます。
1263=963+3=(33)212 - 6\sqrt{3} = 9 - 6\sqrt{3} + 3 = (3 - \sqrt{3})^2 
と変形できます。
したがって、
1263=(33)2\sqrt{12 - 6\sqrt{3}} = \sqrt{(3 - \sqrt{3})^2} 
となります。
3>33 > \sqrt{3} 
なので
(33)2=33=33\sqrt{(3 - \sqrt{3})^2} = |3 - \sqrt{3}| = 3 - \sqrt{3} 
となります。

3. 最終的な答え

333 - \sqrt{3}

「代数学」の関連問題

以下の3つの2次関数の式を求める問題です。 (1) 原点と点(1,2)を通る、$y=ax^2 + bx$ の形の関数 (2) 2点(1,4)と(3,36)を通る2次関数 (3) 頂点が(2,3)である...

二次関数関数の決定式の変形
2025/5/30

(1) 行列 $A_1 = \begin{pmatrix} 1 & 1 & -3 & 1 \\ 2 & 1 & -5 & 0 \\ 1 & 1 & -3 & 1 \end{pmatrix}$ を行基本...

行列行基本変形階段行列階数
2025/5/30

次の3つの問題に答えよ。 (1) $y$ が $x$ の2次関数で、原点と点 $(1, 2)$ を通るとき、$y$ を $x$ の式で表せ。 (2) $y$ が $x$ の2次関数で、2点 $(1, ...

二次関数2次関数数式グラフ方程式
2025/5/30

$a, b$ は整数である。$a$ を4で割ると2余り、$a^2 - 2b$ は8の倍数である。このとき、$b$ を4で割った余りを求めよ。

整数剰余代数
2025/5/30

$a$ は 0 でない定数とする。すべての $x$ に対して、$ax^2 + 2ax - 3 + \frac{4}{a} < 0$ が成り立つような $a$ の値の範囲を求める。

二次不等式判別式二次関数
2025/5/30

$a$を定数とする。方程式 $x^2 - 2ax - a^2 + 2a = 0$ が実数解を持つとき、全ての解が $0 \le x \le 2$ となるような $a$ の値の範囲を求める問題です。

二次方程式判別式解の範囲不等式
2025/5/30

2次関数 $y = ax^2 - x + a$ について、以下の問いに答える。 (1) グラフが $x$ 軸と接するときの $a$ の値を求める。 (2) すべての $x$ に対して $y < 0$ ...

二次関数二次方程式判別式不等式
2025/5/30

2次関数 $y = ax^2 - x + a$ について、以下の2つの問いに答える。 (1) グラフが $x$ 軸と接するときの $a$ の値を求める。 (2) 関数の値がすべての $x$ に対して負...

二次関数判別式二次方程式グラフ不等式
2025/5/30

2次方程式 $x^2 - 2ax + 3a - 2 = 0$ を考える。 (ア) この方程式が異なる2つの実数解を持つような $a$ の範囲を求める。 (イ) この方程式が正の解と負の解を持つような ...

二次方程式判別式解の公式解と係数の関係
2025/5/30

問題は、以下の式を満たす $x$ を求めることです。 $\frac{\frac{4}{x} \times 58.5}{5.63 \times 10^{-24}} = 2.23$

方程式数値計算指数表記計算
2025/5/30