関数 $f(x) = x^2 - x + 8$ が与えられたとき、$f(a)$ の値を求める問題です。

代数学関数代入多項式
2025/5/28

1. 問題の内容

関数 f(x)=x2x+8f(x) = x^2 - x + 8 が与えられたとき、f(a)f(a) の値を求める問題です。

2. 解き方の手順

f(x)=x2x+8f(x) = x^2 - x + 8xxaa を代入します。
f(a)=a2a+8f(a) = a^2 - a + 8

3. 最終的な答え

f(a)=a2a+8f(a) = a^2 - a + 8

「代数学」の関連問題

与えられた4つの数式について、計算を行い、空欄を埋める問題です。

多項式の計算式の展開文字式の計算
2025/5/30

与えられた4つの式を計算し、空欄に当てはまる数や文字を答える問題です。 (1) $2a+8b-a+b=a+\boxed{ア}b$ (2) $3(a^2-5a+2)=\boxed{イ}a^2-\boxe...

式の計算同類項分配法則文字式
2025/5/30

$(x+y)^4$ を展開する問題です。

展開二項定理多項式二項係数
2025/5/30

与えられた数式を計算し、空欄に当てはまる数や文字を答える問題です。 (1) $2a + 8b - a + b = a + \boxed{ア}b$ (2) $3(a^2 - 5a + 2) = \box...

式の計算多項式展開分配法則
2025/5/30

与えられた連立方程式を逆行列を用いて解く問題です。連立方程式は2組あります。 (1) $3x + 2y = 0$ $x - 2y = 8$ (2) $x + y = -3$ $2x - y = 6$

連立方程式逆行列行列
2025/5/30

与えられた数列の一般項、または数列の和を求める問題だと考えられます。数列は $\frac{1}{1 \cdot 5}, \frac{1}{5 \cdot 9}, \frac{1}{9 \cdot 13...

数列部分分数分解シグマ等差数列telescoping sum
2025/5/30

与えられた数列 $1, 2, 5, 14, 41, \dots$ の一般項 $a_n$ を階差数列を用いて求める。

数列階差数列等比数列一般項
2025/5/30

数列 $10, 8, 4, -2, -10, \dots$ の一般項を求める問題です。

数列一般項階差数列等差数列
2025/5/30

初項から第 $n$ 項までの和が $n^2 - 3n$ で表される数列の一般項を求める。

数列一般項
2025/5/30

与えられた数列 $1, 2, 5, 10, 17, 26, \dots$ の一般項 $a_n$ を求めます。

数列一般項階差数列等差数列
2025/5/30