与えられた一次方程式 $8x - 3 = 7x$ を解いて、$x$ の値を求める問題です。

代数学一次方程式方程式解の公式
2025/5/29

1. 問題の内容

与えられた一次方程式 8x3=7x8x - 3 = 7x を解いて、xx の値を求める問題です。

2. 解き方の手順

まず、xxの項を左辺に、定数項を右辺に集めます。
両辺から 7x7x を引きます。
8x37x=7x7x8x - 3 - 7x = 7x - 7x
x3=0x - 3 = 0
次に、両辺に 33 を加えます。
x3+3=0+3x - 3 + 3 = 0 + 3
x=3x = 3

3. 最終的な答え

x=3x = 3

「代数学」の関連問題

$4x^2 + 4y^2 + z^2 = 4$ および $2x + 2y + z = 3$ を満たし、$x < y < z$ であるとき、$2xy - x - y$ の取りうる値の範囲を求める問題です...

連立方程式不等式二次曲線変数変換範囲
2025/5/30

対数関数のグラフが与えられており、そのグラフを表す式が $y = \log_a(x+b) + c$ と与えられています。このとき、$a, b, c$ の値を求める問題です。

対数関数グラフ関数の決定
2025/5/30

$\sum_{k=1}^{n} (3k^2 - 7k + 4)$ を求める問題です。

数列シグマ等差数列等比数列
2025/5/30

与えられた対数関数のグラフから、$y = \log_a(x+b) + c$ の $a$, $b$, $c$ の値を求める。

対数関数グラフ関数の決定漸近線
2025/5/30

画像に示された指数関数のグラフの式が $y = ca^x + b$ で与えられています。このグラフから $a$, $b$, $c$ の値を求め、$y = ca^x + b$ を決定することを求められて...

指数関数グラフ方程式漸近線関数
2025/5/30

与えられたグラフから指数関数 $y = ca^x + b$ と対数関数 $y = \log_a(x+b) + c$ の各係数 $a, b, c$ の値を求めます。

指数関数対数関数グラフ方程式係数
2025/5/30

与えられた3つの式について、二重根号を外して簡単にせよという問題です。 (1) $\sqrt{7+2\sqrt{10}}$ (2) $\sqrt{12-6\sqrt{3}}$ (3) $\sqrt{2...

二重根号根号式の計算平方根
2025/5/30

練習問題25の(2)と(3)の式を、例11のような和の形で記述する。 (2) $\sum_{k=3}^{8} 2^{k-1}$ (3) $\sum_{k=1}^{n-1} \frac{1}{k}$

シグマ級数数列和の記号
2025/5/30

与えられた数列の和を求める問題です。具体的には、$\sum_{k=1}^{n}(2k-1)$ を計算します。

数列シグマ級数代数
2025/5/30

与えられた3つの方程式または不等式を解く問題です。 (1) $|x-3| = 2x$ (2) $|x-4| \leq 2x+1$ (3) $|x+1| > 5x$

絶対値不等式方程式場合分け一次不等式一次方程式
2025/5/30