$x + \frac{1}{x} = \sqrt{2} + 1$のとき、$x^2 + \frac{1}{x^2}$の値を求めよ。代数学式の計算二次式有理化2025/5/291. 問題の内容x+1x=2+1x + \frac{1}{x} = \sqrt{2} + 1x+x1=2+1のとき、x2+1x2x^2 + \frac{1}{x^2}x2+x21の値を求めよ。2. 解き方の手順まず、x+1x=2+1x + \frac{1}{x} = \sqrt{2} + 1x+x1=2+1 の両辺を2乗します。(x+1x)2=(2+1)2(x + \frac{1}{x})^2 = (\sqrt{2} + 1)^2(x+x1)2=(2+1)2x2+2(x)(1x)+1x2=(2)2+2(2)(1)+12x^2 + 2(x)(\frac{1}{x}) + \frac{1}{x^2} = (\sqrt{2})^2 + 2(\sqrt{2})(1) + 1^2x2+2(x)(x1)+x21=(2)2+2(2)(1)+12x2+2+1x2=2+22+1x^2 + 2 + \frac{1}{x^2} = 2 + 2\sqrt{2} + 1x2+2+x21=2+22+1x2+2+1x2=3+22x^2 + 2 + \frac{1}{x^2} = 3 + 2\sqrt{2}x2+2+x21=3+22次に、x2+1x2x^2 + \frac{1}{x^2}x2+x21 の値を求めるために、両辺から2を引きます。x2+1x2=3+22−2x^2 + \frac{1}{x^2} = 3 + 2\sqrt{2} - 2x2+x21=3+22−2x2+1x2=1+22x^2 + \frac{1}{x^2} = 1 + 2\sqrt{2}x2+x21=1+223. 最終的な答え1+221 + 2\sqrt{2}1+22