$x = \frac{1-\sqrt{5}}{2}$ のとき、次の2つの式の値を求める問題です。 (1) $x^2 - x - 1$ (2) $x^4 - 2x^3 + 1$代数学二次方程式式の値解の公式2025/5/291. 問題の内容x=1−52x = \frac{1-\sqrt{5}}{2}x=21−5 のとき、次の2つの式の値を求める問題です。(1) x2−x−1x^2 - x - 1x2−x−1(2) x4−2x3+1x^4 - 2x^3 + 1x4−2x3+12. 解き方の手順(1) x2−x−1x^2 - x - 1x2−x−1 の値を求めるまず、x=1−52x = \frac{1-\sqrt{5}}{2}x=21−5 を変形します。2x=1−52x = 1-\sqrt{5}2x=1−52x−1=−52x - 1 = -\sqrt{5}2x−1=−5両辺を2乗すると(2x−1)2=(−5)2(2x - 1)^2 = (-\sqrt{5})^2(2x−1)2=(−5)24x2−4x+1=54x^2 - 4x + 1 = 54x2−4x+1=54x2−4x−4=04x^2 - 4x - 4 = 04x2−4x−4=0両辺を4で割るとx2−x−1=0x^2 - x - 1 = 0x2−x−1=0(2) x4−2x3+1x^4 - 2x^3 + 1x4−2x3+1 の値を求めるx2−x−1=0x^2 - x - 1 = 0x2−x−1=0 より x2=x+1x^2 = x+1x2=x+1x3=x(x2)=x(x+1)=x2+x=(x+1)+x=2x+1x^3 = x(x^2) = x(x+1) = x^2 + x = (x+1) + x = 2x + 1x3=x(x2)=x(x+1)=x2+x=(x+1)+x=2x+1x4=x(x3)=x(2x+1)=2x2+x=2(x+1)+x=3x+2x^4 = x(x^3) = x(2x+1) = 2x^2 + x = 2(x+1) + x = 3x + 2x4=x(x3)=x(2x+1)=2x2+x=2(x+1)+x=3x+2よって、x4−2x3+1=(3x+2)−2(2x+1)+1=3x+2−4x−2+1=−x+1x^4 - 2x^3 + 1 = (3x+2) - 2(2x+1) + 1 = 3x+2 - 4x - 2 + 1 = -x + 1x4−2x3+1=(3x+2)−2(2x+1)+1=3x+2−4x−2+1=−x+1x=1−52x = \frac{1-\sqrt{5}}{2}x=21−5 を代入すると−x+1=−1−52+1=−1+52+22=1+52-x + 1 = -\frac{1-\sqrt{5}}{2} + 1 = \frac{-1+\sqrt{5}}{2} + \frac{2}{2} = \frac{1+\sqrt{5}}{2}−x+1=−21−5+1=2−1+5+22=21+53. 最終的な答え(1) x2−x−1=0x^2 - x - 1 = 0x2−x−1=0(2) x4−2x3+1=1+52x^4 - 2x^3 + 1 = \frac{1+\sqrt{5}}{2}x4−2x3+1=21+5