3辺の長さが5, 7, $x$である三角形が存在するとき、$x$の値として不適切なものを選択肢から選ぶ問題です。

幾何学三角形成立条件不等式
2025/5/29

1. 問題の内容

3辺の長さが5, 7, xxである三角形が存在するとき、xxの値として不適切なものを選択肢から選ぶ問題です。

2. 解き方の手順

三角形の成立条件は、「最も長い辺の長さが、他の2辺の長さの和よりも短い」ことです。言い換えると、「任意の2辺の長さの和は、残りの1辺の長さよりも大きい」です。
この条件を満たさないxxの値が、不適切なものとなります。
3辺の長さを5, 7, xxとすると、以下の3つの不等式が成り立つ必要があります。
* 5+7>x5 + 7 > x
* 5+x>75 + x > 7
* 7+x>57 + x > 5
これらの不等式を解くと、以下のようになります。
* 12>x12 > x つまり x<12x < 12
* x>2x > 2
* x>2x > -2
したがって、xxは2より大きく、12より小さい必要があります。すなわち、2<x<122 < x < 12
選択肢を順番に確認します。

1. $x=1$ は $2 < x < 12$ を満たさない。

2. $x=3$ は $2 < x < 12$ を満たす。

3. $x=7$ は $2 < x < 12$ を満たす。

4. $x=10$ は $2 < x < 12$ を満たす。

5. $x=11$ は $2 < x < 12$ を満たす。

3. 最終的な答え

x=1x=1は三角形の成立条件を満たさないため、不適切な値です。
答えは「

1. $x=1$」です。

「幾何学」の関連問題

$xyz$ 空間において、 $S: x^2 - y^2 + z^2 = 0$ で表される立体がある。この立体 $S$ を平面 $z = 2$ で切ったときの切り口は双曲線になる。この双曲線の焦点の座標...

空間図形双曲線焦点
2025/5/31

$xyz$空間において、立体$S: x^2 - y^2 + z = 0$を平面$z=2$で切った切り口の双曲線の焦点の座標を求める問題です。

空間図形双曲線焦点座標
2025/5/31

座標空間内の4点 $O(0,0,0)$, $A(1,1,0)$, $B(1,0,p)$, $C(q,r,s)$ を頂点とする四面体OABCが正四面体である。$p>0, s>0$ の条件下で、以下の問い...

空間図形正四面体座標空間断面積
2025/5/31

半径が6cm、中心角が $\frac{2\pi}{3}$ の扇形の弧の長さ $l$ と面積 $S$ を求める問題です。

扇形弧の長さ面積半径中心角
2025/5/31

空間内に2つの直線 $l_1$ と $l_2$ がある。 $l_1: (x, y, z) = (2, 3, 1) + s(2, 1, 1)$ $l_2: (x, y, z) = (1, -1, 3) ...

空間ベクトル最小距離偏微分線分
2025/5/31

円に内接する三角形ABCがあり、円の中心をOとする。$\angle ACB = 75^\circ$, $\angle OAC = 30^\circ$のとき、$\angle AOC$, $\angle ...

三角形円周角の定理角度二等辺三角形
2025/5/31

円 O に内接する三角形 ABC があり、∠OAC = 30°である。 以下の角の大きさと、辺の比を求める問題です。 * ∠AOC * ∠ABC * ∠ADH * ∠DAB * ∠DAH * DH/B...

三角形内接角度円周角の定理正弦定理図形
2025/5/31

円に内接する四角形ABCDがあり、$∠AOC = 120^\circ$、$∠ABC = \text{エオ}$である。 対角線ACとBDの交点をEとし、点AからBDに下ろした垂線と辺BCとの交点をFとす...

四角形内接角度円周角の定理三角形比率
2025/5/31

二つの平面 $\alpha: x - y + 2z - 4 = 0$ と $\beta: 2x + y - z - 5 = 0$ の交線を含む平面で、点 $(4, 2, 3)$ を通る平面の方程式を求...

平面方程式交線ベクトル
2025/5/31

xy平面上に2つの円 $C_1: x^2 + y^2 = 25$ と $C_2: (x-4)^2 + (y-3)^2 = 2$ がある。 (1) $C_1$ と $C_2$ の2つの交点を通る直線の方...

交点円の方程式直線の方程式
2025/5/31