与えられた3つの関数 $f(x, y)$ に対して、点$(0, 0)$における偏微分係数 $f_x(0, 0)$ と $f_y(0, 0)$ を定義に従って求める問題です。解析学偏微分多変数関数極限2025/5/291. 問題の内容与えられた3つの関数 f(x,y)f(x, y)f(x,y) に対して、点(0,0)(0, 0)(0,0)における偏微分係数 fx(0,0)f_x(0, 0)fx(0,0) と fy(0,0)f_y(0, 0)fy(0,0) を定義に従って求める問題です。2. 解き方の手順偏微分係数の定義は以下の通りです。fx(0,0)=limh→0f(0+h,0)−f(0,0)hf_x(0,0) = \lim_{h \to 0} \frac{f(0+h, 0) - f(0, 0)}{h}fx(0,0)=limh→0hf(0+h,0)−f(0,0)fy(0,0)=limk→0f(0,0+k)−f(0,0)kf_y(0,0) = \lim_{k \to 0} \frac{f(0, 0+k) - f(0, 0)}{k}fy(0,0)=limk→0kf(0,0+k)−f(0,0)各関数について、これらの定義を用いて計算を行います。1) f(x,y)=(x+y)2f(x, y) = (x + y)^2f(x,y)=(x+y)2f(0,0)=(0+0)2=0f(0, 0) = (0 + 0)^2 = 0f(0,0)=(0+0)2=0f(h,0)=(h+0)2=h2f(h, 0) = (h + 0)^2 = h^2f(h,0)=(h+0)2=h2f(0,k)=(0+k)2=k2f(0, k) = (0 + k)^2 = k^2f(0,k)=(0+k)2=k2fx(0,0)=limh→0h2−0h=limh→0h=0f_x(0,0) = \lim_{h \to 0} \frac{h^2 - 0}{h} = \lim_{h \to 0} h = 0fx(0,0)=limh→0hh2−0=limh→0h=0fy(0,0)=limk→0k2−0k=limk→0k=0f_y(0,0) = \lim_{k \to 0} \frac{k^2 - 0}{k} = \lim_{k \to 0} k = 0fy(0,0)=limk→0kk2−0=limk→0k=02) f(x,y)=x3+xy+y2f(x, y) = x^3 + xy + y^2f(x,y)=x3+xy+y2f(0,0)=03+0⋅0+02=0f(0, 0) = 0^3 + 0 \cdot 0 + 0^2 = 0f(0,0)=03+0⋅0+02=0f(h,0)=h3+h⋅0+02=h3f(h, 0) = h^3 + h \cdot 0 + 0^2 = h^3f(h,0)=h3+h⋅0+02=h3f(0,k)=03+0⋅k+k2=k2f(0, k) = 0^3 + 0 \cdot k + k^2 = k^2f(0,k)=03+0⋅k+k2=k2fx(0,0)=limh→0h3−0h=limh→0h2=0f_x(0,0) = \lim_{h \to 0} \frac{h^3 - 0}{h} = \lim_{h \to 0} h^2 = 0fx(0,0)=limh→0hh3−0=limh→0h2=0fy(0,0)=limk→0k2−0k=limk→0k=0f_y(0,0) = \lim_{k \to 0} \frac{k^2 - 0}{k} = \lim_{k \to 0} k = 0fy(0,0)=limk→0kk2−0=limk→0k=03) f(x,y)=sin(x+2y)f(x, y) = \sin(x + 2y)f(x,y)=sin(x+2y)f(0,0)=sin(0+2⋅0)=sin(0)=0f(0, 0) = \sin(0 + 2 \cdot 0) = \sin(0) = 0f(0,0)=sin(0+2⋅0)=sin(0)=0f(h,0)=sin(h+2⋅0)=sin(h)f(h, 0) = \sin(h + 2 \cdot 0) = \sin(h)f(h,0)=sin(h+2⋅0)=sin(h)f(0,k)=sin(0+2⋅k)=sin(2k)f(0, k) = \sin(0 + 2 \cdot k) = \sin(2k)f(0,k)=sin(0+2⋅k)=sin(2k)fx(0,0)=limh→0sin(h)−0h=limh→0sin(h)h=1f_x(0,0) = \lim_{h \to 0} \frac{\sin(h) - 0}{h} = \lim_{h \to 0} \frac{\sin(h)}{h} = 1fx(0,0)=limh→0hsin(h)−0=limh→0hsin(h)=1fy(0,0)=limk→0sin(2k)−0k=limk→0sin(2k)k=limk→02⋅sin(2k)2k=2⋅1=2f_y(0,0) = \lim_{k \to 0} \frac{\sin(2k) - 0}{k} = \lim_{k \to 0} \frac{\sin(2k)}{k} = \lim_{k \to 0} 2 \cdot \frac{\sin(2k)}{2k} = 2 \cdot 1 = 2fy(0,0)=limk→0ksin(2k)−0=limk→0ksin(2k)=limk→02⋅2ksin(2k)=2⋅1=23. 最終的な答え1) fx(0,0)=0f_x(0, 0) = 0fx(0,0)=0, fy(0,0)=0f_y(0, 0) = 0fy(0,0)=02) fx(0,0)=0f_x(0, 0) = 0fx(0,0)=0, fy(0,0)=0f_y(0, 0) = 0fy(0,0)=03) fx(0,0)=1f_x(0, 0) = 1fx(0,0)=1, fy(0,0)=2f_y(0, 0) = 2fy(0,0)=2